将kni合并到tfe中

This commit is contained in:
wangmenglan
2023-04-18 16:03:57 +08:00
parent 48c303e856
commit 11a46269f1
34 changed files with 6301 additions and 26 deletions

View File

@@ -0,0 +1,115 @@
#include <assert.h>
#include <MESA/MESA_prof_load.h>
#include "tfe_cmsg.h"
#include "tfe_tap_rss.h"
#include "tfe_acceptor_kni.h"
#include "tfe_metrics.h"
/******************************************************************************
* session_ctx
******************************************************************************/
struct session_ctx *session_ctx_new()
{
struct session_ctx *ctx = (struct session_ctx *)calloc(1, sizeof(struct session_ctx));
assert(ctx != NULL);
return ctx;
}
void session_ctx_free(struct session_ctx *ctx)
{
if (ctx)
{
if (ctx->first_ctrl_pkt.addr_string)
{
free(ctx->first_ctrl_pkt.addr_string);
ctx->first_ctrl_pkt.addr_string = NULL;
}
if (ctx->first_ctrl_pkt.header_data)
{
free(ctx->first_ctrl_pkt.header_data);
ctx->first_ctrl_pkt.header_data = NULL;
}
if (ctx->cmsg)
{
tfe_cmsg_destroy(ctx->cmsg);
}
free(ctx);
ctx = 0;
}
}
/******************************************************************************
* acceptor_ctx
******************************************************************************/
struct acceptor_ctx *acceptor_ctx_create(const char *profile)
{
int ret = 0;
struct acceptor_ctx *ctx = ALLOC(struct acceptor_ctx, 1);
MESA_load_profile_int_def(profile, "system", "firewall_sids", (int *)&(ctx->firewall_sids), 1001);
MESA_load_profile_int_def(profile, "system", "service_chaining_sids", (int *)&(ctx->sce_sids), 1002);
MESA_load_profile_int_def(profile, "system", "nr_worker_threads", (int *)&(ctx->nr_worker_threads), 8);
MESA_load_profile_uint_range(profile, "system", "cpu_affinity_mask", TFE_THREAD_MAX, (unsigned int *)ctx->cpu_affinity_mask);
ctx->nr_worker_threads = MIN(ctx->nr_worker_threads, TFE_THREAD_MAX);
CPU_ZERO(&ctx->coremask);
for (int i = 0; i < ctx->nr_worker_threads; i++)
{
int cpu_id = ctx->cpu_affinity_mask[i];
CPU_SET(cpu_id, &ctx->coremask);
}
ctx->io = packet_io_create(profile, ctx->nr_worker_threads, &ctx->coremask);
if (ctx->io == NULL)
{
goto error_out;
}
ctx->config = tfe_tap_config_create(profile, ctx->nr_worker_threads);
if (ctx->config == NULL)
{
goto error_out;
}
ctx->metrics = global_metrics_create();
if (ctx->metrics == NULL)
{
goto error_out;
}
// ctx->enforcer = policy_enforcer_create("KNI", profile, ctx->nr_worker_threads, NULL);
// if (ctx->enforcer == NULL)
// {
// goto error_out;
// }
// if (policy_enforcer_register(ctx->enforcer) == -1)
// {
// goto error_out;
// }
return ctx;
error_out:
acceptor_ctx_destory(ctx);
return NULL;
}
void acceptor_ctx_destory(struct acceptor_ctx * ctx)
{
if (ctx)
{
packet_io_destory(ctx->io);
tfe_tap_destory(ctx->config);
free(ctx);
ctx = NULL;
}
return;
}

View File

@@ -0,0 +1,57 @@
#include <stdio.h>
#include <string.h>
#include <arpa/inet.h>
#include "tfe_addr_tuple4.h"
char *addr_tuple4_to_str(const struct addr_tuple4 *addr)
{
char *str_ret = NULL;
if (addr->addr_type == ADDR_TUPLE4_TYPE_V4)
{
char src_addr[INET_ADDRSTRLEN] = {0};
char dst_addr[INET_ADDRSTRLEN] = {0};
uint16_t src_port = ntohs((uint16_t)addr->src_port);
uint16_t dst_port = ntohs((uint16_t)addr->dst_port);
inet_ntop(AF_INET, &addr->addr_v4.src_addr, src_addr, sizeof(src_addr));
inet_ntop(AF_INET, &addr->addr_v4.dst_addr, dst_addr, sizeof(dst_addr));
asprintf(&str_ret, "%s %u %s %u", src_addr, src_port, dst_addr, dst_port);
}
if (addr->addr_type == ADDR_TUPLE4_TYPE_V6)
{
char src_addr[INET6_ADDRSTRLEN] = {0};
char dst_addr[INET6_ADDRSTRLEN] = {0};
uint16_t src_port = ntohs((uint16_t)addr->src_port);
uint16_t dst_port = ntohs((uint16_t)addr->dst_port);
inet_ntop(AF_INET6, &addr->addr_v6.src_addr, src_addr, sizeof(src_addr));
inet_ntop(AF_INET6, &addr->addr_v6.dst_addr, dst_addr, sizeof(dst_addr));
asprintf(&str_ret, "%s %u %s %u", src_addr, src_port, dst_addr, dst_port);
}
return str_ret;
}
void addr_tuple4_reverse(const struct addr_tuple4 *orin, struct addr_tuple4 *out)
{
memset(out, 0, sizeof(struct addr_tuple4));
if (orin->addr_type == ADDR_TUPLE4_TYPE_V4)
{
out->addr_type = ADDR_TUPLE4_TYPE_V4;
out->addr_v4.src_addr = orin->addr_v4.dst_addr;
out->addr_v4.dst_addr = orin->addr_v4.src_addr;
out->src_port = orin->dst_port;
out->dst_port = orin->src_port;
}
if (orin->addr_type == ADDR_TUPLE4_TYPE_V6)
{
out->addr_type = ADDR_TUPLE4_TYPE_V6;
out->addr_v6.src_addr = orin->addr_v6.dst_addr;
out->addr_v6.dst_addr = orin->addr_v6.src_addr;
out->src_port = orin->dst_port;
out->dst_port = orin->src_port;
}
}

View File

@@ -0,0 +1,142 @@
#include <string.h>
#include <stdlib.h>
#include <cjson/cJSON.h>
#include "tfe_mpack.h"
#include "tfe_cmsg.h"
#include "tfe_utils.h"
#include "tfe_ctrl_packet.h"
const char *session_state_to_string(enum session_state state)
{
switch (state)
{
case SESSION_STATE_OPENING:
return "opening";
case SESSION_STATE_CLOSING:
return "closing";
case SESSION_STATE_ACTIVE:
return "active";
case SESSION_STATE_RESETALL:
return "resetall";
default:
return "unknown";
}
}
void ctrl_packet_parser_init(struct ctrl_pkt_parser *handler)
{
memset(handler, 0, sizeof(struct ctrl_pkt_parser));
handler->cmsg = tfe_cmsg_init();
}
// return 0 : success
// return -1 : error
int ctrl_packet_parser_parse(struct ctrl_pkt_parser *handler, const char *data, size_t length)
{
// TODO FREE
return parse_messagepack(data, length, handler);
}
void ctrl_packet_parser_dump(struct ctrl_pkt_parser *handler)
{
uint16_t cmsg_len;
if (handler)
{
TFE_LOG_INFO(g_default_logger, "%s: tsync : %s", LOG_TAG_POLICY, handler->tsync);
TFE_LOG_INFO(g_default_logger, "%s: session_id : %lu", LOG_TAG_POLICY, handler->session_id);
TFE_LOG_INFO(g_default_logger, "%s: state : %s", LOG_TAG_POLICY, session_state_to_string(handler->state));
TFE_LOG_INFO(g_default_logger, "%s: method : %s", LOG_TAG_POLICY, handler->method);
TFE_LOG_INFO(g_default_logger, "%s: tfe policy_id_num : %d", LOG_TAG_POLICY, handler->tfe_policy_id_num);
for (int i = 0; i < handler->tfe_policy_id_num; i++)
{
TFE_LOG_INFO(g_default_logger, "%s: %d tfe policy_ids[%03lu]", LOG_TAG_POLICY, i, handler->tfe_policy_ids[i]);
}
TFE_LOG_INFO(g_default_logger, "%s: sce policy_id_num : %d", LOG_TAG_POLICY, handler->sce_policy_id_num);
for (int i = 0; i < handler->tfe_policy_id_num; i++)
{
TFE_LOG_INFO(g_default_logger, "%s: %d sce policy_ids[%03lu]", LOG_TAG_POLICY, i, handler->sce_policy_ids[i]);
}
uint64_t policy_id = 0;
tfe_cmsg_get_value(handler->cmsg, TFE_CMSG_POLICY_ID, (unsigned char *)&policy_id, 64, &cmsg_len);
TFE_LOG_INFO(g_default_logger, "TFE_CMSG_POLICY_ID: %lu", policy_id);
uint16_t client_mss = 0;
tfe_cmsg_get_value(handler->cmsg, TFE_CMSG_TCP_RESTORE_MSS_CLIENT, (unsigned char *)&client_mss, 16, &cmsg_len);
TFE_LOG_INFO(g_default_logger, "TFE_CMSG_TCP_RESTORE_MSS_CLIENT: %u", client_mss);
}
}
const char * tfe_cmsg_tlv_type_to_string[TFE_CMSG_TLV_NR_MAX];
void tfe_cmsg_enum_to_string()
{
memset(tfe_cmsg_tlv_type_to_string, 0 ,sizeof(tfe_cmsg_tlv_type_to_string));
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_SEQ] = "TFE_CMSG_TCP_RESTORE_SEQ";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_ACK] = "TFE_CMSG_TCP_RESTORE_ACK";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_MSS_CLIENT] = "TFE_CMSG_TCP_RESTORE_MSS_CLIENT";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_MSS_SERVER] = "TFE_CMSG_TCP_RESTORE_MSS_SERVER";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_WSACLE_CLIENT] = "TFE_CMSG_TCP_RESTORE_WSACLE_CLIENT";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_WSACLE_SERVER] = "TFE_CMSG_TCP_RESTORE_WSACLE_SERVER";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_SACK_CLIENT] = "TFE_CMSG_TCP_RESTORE_SACK_CLIENT";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_SACK_SERVER] = "TFE_CMSG_TCP_RESTORE_SACK_SERVER";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_TS_CLIENT] = "TFE_CMSG_TCP_RESTORE_TS_CLIENT";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_TS_SERVER] = "TFE_CMSG_TCP_RESTORE_TS_SERVER";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_PROTOCOL] = "TFE_CMSG_TCP_RESTORE_PROTOCOL";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_WINDOW_CLIENT] = "TFE_CMSG_TCP_RESTORE_WINDOW_CLIENT";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_WINDOW_SERVER] = "TFE_CMSG_TCP_RESTORE_WINDOW_SERVER";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_INFO_PACKET_CUR_DIR] = "TFE_CMSG_TCP_RESTORE_INFO_PACKET_CUR_DIR";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_TS_CLIENT_VAL] = "TFE_CMSG_TCP_RESTORE_TS_CLIENT_VAL";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_RESTORE_TS_SERVER_VAL] = "TFE_CMSG_TCP_RESTORE_TS_SERVER_VAL";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_POLICY_ID] = "TFE_CMSG_POLICY_ID";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_STREAM_TRACE_ID] = "TFE_CMSG_STREAM_TRACE_ID";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SSL_INTERCEPT_STATE] = "TFE_CMSG_SSL_INTERCEPT_STATE";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SSL_SERVER_SIDE_LATENCY] = "TFE_CMSG_SSL_SERVER_SIDE_LATENCY";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SSL_CLIENT_SIDE_LATENCY] = "TFE_CMSG_SSL_CLIENT_SIDE_LATENCY";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SSL_SERVER_SIDE_VERSION] = "TFE_CMSG_SSL_SERVER_SIDE_VERSION";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SSL_CLIENT_SIDE_VERSION] = "TFE_CMSG_SSL_CLIENT_SIDE_VERSION";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SSL_PINNING_STATE] = "TFE_CMSG_SSL_PINNING_STATE";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SSL_CERT_VERIFY] = "TFE_CMSG_SSL_CERT_VERIFY";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SSL_ERROR] = "TFE_CMSG_SSL_ERROR";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SRC_MAC] = "TFE_CMSG_SRC_MAC";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DST_MAC] = "TFE_CMSG_DST_MAC";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DOWNSTREAM_TCP_NODELAY] = "TFE_CMSG_DOWNSTREAM_TCP_NODELAY";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DOWNSTREAM_TCP_TTL] = "TFE_CMSG_DOWNSTREAM_TCP_TTL";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DOWNSTREAM_TCP_KEEPALIVE] = "TFE_CMSG_DOWNSTREAM_TCP_KEEPALIVE";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DOWNSTREAM_TCP_KEEPCNT] = "TFE_CMSG_DOWNSTREAM_TCP_KEEPCNT";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DOWNSTREAM_TCP_KEEPIDLE] = "TFE_CMSG_DOWNSTREAM_TCP_KEEPIDLE";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DOWNSTREAM_TCP_KEEPINTVL] = "TFE_CMSG_DOWNSTREAM_TCP_KEEPINTVL";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DOWNSTREAM_TCP_USER_TIMEOUT] = "TFE_CMSG_DOWNSTREAM_TCP_USER_TIMEOUT";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_UPSTREAM_TCP_NODELAY] = "TFE_CMSG_UPSTREAM_TCP_NODELAY";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_UPSTREAM_TCP_TTL] = "TFE_CMSG_UPSTREAM_TCP_TTL";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_UPSTREAM_TCP_KEEPALIVE] = "TFE_CMSG_UPSTREAM_TCP_KEEPALIVE";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_UPSTREAM_TCP_KEEPCNT] = "TFE_CMSG_UPSTREAM_TCP_KEEPCNT";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_UPSTREAM_TCP_KEEPIDLE] = "TFE_CMSG_UPSTREAM_TCP_KEEPIDLE";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_UPSTREAM_TCP_KEEPINTVL] = "TFE_CMSG_UPSTREAM_TCP_KEEPINTVL";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_UPSTREAM_TCP_USER_TIMEOUT] = "TFE_CMSG_UPSTREAM_TCP_USER_TIMEOUT";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_TCP_PASSTHROUGH] = "TFE_CMSG_TCP_PASSTHROUGH";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SRC_SUB_ID] = "TFE_CMSG_SRC_SUB_ID";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DST_SUB_ID] = "TFE_CMSG_DST_SUB_ID";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SRC_ASN] = "TFE_CMSG_SRC_ASN";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DST_ASN] = "TFE_CMSG_DST_ASN";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SRC_ORGANIZATION] = "TFE_CMSG_SRC_ORGANIZATION";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DST_ORGANIZATION] = "TFE_CMSG_DST_ORGANIZATION";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SRC_IP_LOCATION_COUNTRY] = "TFE_CMSG_SRC_IP_LOCATION_COUNTRY";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DST_IP_LOCATION_COUNTRY] = "TFE_CMSG_DST_IP_LOCATION_COUNTRY";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SRC_IP_LOCATION_PROVINE] = "TFE_CMSG_SRC_IP_LOCATION_PROVINE";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DST_IP_LOCATION_PROVINE] = "TFE_CMSG_DST_IP_LOCATION_PROVINE";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SRC_IP_LOCATION_CITY] = "TFE_CMSG_SRC_IP_LOCATION_CITY";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DST_IP_LOCATION_CITY] = "TFE_CMSG_DST_IP_LOCATION_CITY";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SRC_IP_LOCATION_SUBDIVISION] = "TFE_CMSG_SRC_IP_LOCATION_SUBDIVISION";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_DST_IP_LOCATION_SUBDIVISION] = "TFE_CMSG_DST_IP_LOCATION_SUBDIVISION";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SSL_CLIENT_JA3_FINGERPRINT] = "TFE_CMSG_SSL_CLIENT_JA3_FINGERPRINT";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_FQDN_CAT_ID_NUM] = "TFE_CMSG_FQDN_CAT_ID_NUM";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_FQDN_CAT_ID_VAL] = "TFE_CMSG_FQDN_CAT_ID_VAL";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_COMMON_DIRECTION] = "TFE_CMSG_COMMON_DIRECTION";
tfe_cmsg_tlv_type_to_string[TFE_CMSG_SSL_PASSTHROUGH_REASON] = "TFE_CMSG_SSL_PASSTHROUGH_REASON";
}

133
common/src/tfe_metrics.cpp Normal file
View File

@@ -0,0 +1,133 @@
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <MESA/MESA_prof_load.h>
#include "tfe_proxy.h"
#include "tfe_metrics.h"
enum SCE_STAT_FIELD
{
// hit block policy
STAT_HIT_POLICY_PKT,
STAT_HIT_POLICY_B,
// dev nf interface
STAT_RAW_PKT_RX_PKT,
STAT_RAW_PKT_RX_B,
STAT_RAW_PKT_TX_PKT,
STAT_RAW_PKT_TX_B,
// steering
STAT_DECRYPTED_TX_PKT,
STAT_DECRYPTED_TX_B,
STAT_DECRYPTED_RX_PKT,
STAT_DECRYPTED_RX_B,
// control packet
STAT_CONTROL_RX_PKT,
STAT_CONTROL_RX_B,
STAT_CTRL_PKT_OPENING,
STAT_CTRL_PKT_ACTIVE,
STAT_CTRL_PKT_CLOSING,
STAT_CTRL_PKT_RESETALL,
STAT_CTRL_PKT_ERROR,
// send log
STAT_SEND_LOG,
// max
STAT_MAX,
};
static const char *stat_map[] =
{
// hit policy
[STAT_HIT_POLICY_PKT] = "hit_policy_pkt",
[STAT_HIT_POLICY_B] = "hit_policy_B",
// dev nf interface
[STAT_RAW_PKT_RX_PKT] = "raw_rx_pkt",
[STAT_RAW_PKT_RX_B] = "raw_rx_B",
[STAT_RAW_PKT_TX_PKT] = "raw_tx_pkt",
[STAT_RAW_PKT_TX_B] = "raw_tx_B",
// decrypted
[STAT_DECRYPTED_TX_PKT] = "decrypt_tx_pkt",
[STAT_DECRYPTED_TX_B] = "decrypt_tx_B",
[STAT_DECRYPTED_RX_PKT] = "decrypt_rx_pkt",
[STAT_DECRYPTED_RX_B] = "decrypt_rx_B",
// control packet
[STAT_CONTROL_RX_PKT] = "ctrl_rx_pkt",
[STAT_CONTROL_RX_B] = "ctrl_rx_B",
[STAT_CTRL_PKT_OPENING] = "ctrl_pkt_open",
[STAT_CTRL_PKT_ACTIVE] = "ctrl_pkt_avtive",
[STAT_CTRL_PKT_CLOSING] = "ctrl_pkt_close",
[STAT_CTRL_PKT_RESETALL] = "ctrl_pkt_reset",
[STAT_CTRL_PKT_ERROR] = "ctrl_pkt_error",
// send log
[STAT_SEND_LOG] = "send_log",
[STAT_MAX] = NULL
};
struct global_metrics *global_metrics_create()
{
struct global_metrics *metrics = (struct global_metrics *)calloc(1, sizeof(struct global_metrics));
metrics->fs_handle=tfe_proxy_get_fs_handle();
for (int i = 0; i < STAT_MAX; i++)
{
metrics->fs_id[i] = FS_register(metrics->fs_handle, FS_STYLE_FIELD, FS_CALC_CURRENT, stat_map[i]);
}
return metrics;
}
void global_metrics_destory(struct global_metrics *metrics)
{
if (metrics)
{
FS_library_destroy();
free(metrics);
metrics = NULL;
}
}
void global_metrics_dump(struct global_metrics *metrics)
{
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_HIT_POLICY_PKT], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->hit_policy.n_pkts), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_HIT_POLICY_B], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->hit_policy.n_bytes), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_RAW_PKT_RX_PKT], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->raw_pkt_rx.n_pkts), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_RAW_PKT_RX_B], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->raw_pkt_rx.n_bytes), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_RAW_PKT_TX_PKT], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->raw_pkt_tx.n_pkts), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_RAW_PKT_TX_B], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->raw_pkt_tx.n_bytes), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_DECRYPTED_TX_PKT], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->decrypt_tx.n_pkts), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_DECRYPTED_TX_B], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->decrypt_tx.n_bytes), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_DECRYPTED_RX_PKT], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->decrypt_rx.n_pkts), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_DECRYPTED_RX_B], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->decrypt_rx.n_bytes), 0, __ATOMIC_RELAXED));
// control packet
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_CONTROL_RX_PKT], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->ctrl_pkt_rx.n_pkts), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_CONTROL_RX_B], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->ctrl_pkt_rx.n_bytes), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_CTRL_PKT_OPENING], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->ctrl_pkt_opening_num), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_CTRL_PKT_ACTIVE], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->ctrl_pkt_active_num), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_CTRL_PKT_CLOSING], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->ctrl_pkt_closing_num), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_CTRL_PKT_RESETALL], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->ctrl_pkt_resetall_num), 0, __ATOMIC_RELAXED));
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_CTRL_PKT_ERROR], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->ctrl_pkt_error_num), 0, __ATOMIC_RELAXED));
// send log
FS_operate(metrics->fs_handle, metrics->fs_id[STAT_SEND_LOG], 0, FS_OP_SET, __atomic_fetch_add(&(metrics->send_log), 0, __ATOMIC_RELAXED));
}

216
common/src/tfe_mpack.cpp Normal file
View File

@@ -0,0 +1,216 @@
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/mman.h>
#include <msgpack.h>
#include "tfe_cmsg.h"
#include "tfe_utils.h"
#include "tfe_ctrl_packet.h"
enum ctr_pkt_index
{
INDEX_TSYNC = 0,
INDEX_SESSION_ID,
INDEX_STATE,
INDEX_METHOD,
INDEX_SCE,
INDEX_SHAPER,
INDEX_PROXY,
INDEX_MAX
};
struct mpack_mmap_id2type
{
int id;
enum tfe_cmsg_tlv_type type;
char *str_name;
int size;
}mpack_table[] = {
{.id = 0, .type = TFE_CMSG_POLICY_ID, .str_name = "TFE_CMSG_POLICY_ID", .size = 8},
{.id = 1, .type = TFE_CMSG_TCP_RESTORE_SEQ, .str_name = "TFE_CMSG_TCP_RESTORE_SEQ", .size = 4},
{.id = 2, .type = TFE_CMSG_TCP_RESTORE_ACK, .str_name = "TFE_CMSG_TCP_RESTORE_ACK", .size = 4},
{.id = 3, .type = TFE_CMSG_TCP_RESTORE_MSS_CLIENT, .str_name = "TFE_CMSG_TCP_RESTORE_MSS_CLIENT", .size = 2},
{.id = 4, .type = TFE_CMSG_TCP_RESTORE_MSS_SERVER, .str_name = "TFE_CMSG_TCP_RESTORE_MSS_SERVER", .size = 2},
{.id = 5, .type = TFE_CMSG_TCP_RESTORE_WSACLE_CLIENT, .str_name = "TFE_CMSG_TCP_RESTORE_WSACLE_CLIENT", .size = 1},
{.id = 6, .type = TFE_CMSG_TCP_RESTORE_WSACLE_SERVER, .str_name = "TFE_CMSG_TCP_RESTORE_WSACLE_SERVER", .size = 1},
{.id = 7, .type = TFE_CMSG_TCP_RESTORE_SACK_CLIENT, .str_name = "TFE_CMSG_TCP_RESTORE_SACK_CLIENT", .size = 1},
{.id = 8, .type = TFE_CMSG_TCP_RESTORE_SACK_SERVER, .str_name = "TFE_CMSG_TCP_RESTORE_SACK_SERVER", .size = 1},
{.id = 9, .type = TFE_CMSG_TCP_RESTORE_TS_CLIENT, .str_name = "TFE_CMSG_TCP_RESTORE_TS_CLIENT", .size = 1},
{.id = 10, .type = TFE_CMSG_TCP_RESTORE_TS_SERVER, .str_name = "TFE_CMSG_TCP_RESTORE_TS_SERVER", .size = 1},
{.id = 11, .type = TFE_CMSG_TCP_RESTORE_PROTOCOL, .str_name = "TFE_CMSG_TCP_RESTORE_PROTOCOL", .size = 1},
{.id = 12, .type = TFE_CMSG_TCP_RESTORE_WINDOW_CLIENT, .str_name = "TFE_CMSG_TCP_RESTORE_WINDOW_CLIENT", .size = 2},
{.id = 13, .type = TFE_CMSG_TCP_RESTORE_WINDOW_SERVER, .str_name = "TFE_CMSG_TCP_RESTORE_WINDOW_SERVER", .size = 2},
{.id = 14, .type = TFE_CMSG_TCP_RESTORE_TS_CLIENT_VAL, .str_name = "TFE_CMSG_TCP_RESTORE_TS_CLIENT_VAL", .size = 4},
{.id = 15, .type = TFE_CMSG_TCP_RESTORE_TS_SERVER_VAL, .str_name = "TFE_CMSG_TCP_RESTORE_TS_SERVER_VAL", .size = 4},
{.id = 16, .type = TFE_CMSG_TCP_RESTORE_INFO_PACKET_CUR_DIR, .str_name = "TFE_CMSG_TCP_RESTORE_INFO_PACKET_CUR_DIR", .size = 1},
{.id = 17, .type = TFE_CMSG_SRC_SUB_ID, .str_name = "TFE_CMSG_SRC_SUB_ID", .size = 256},
{.id = 18, .type = TFE_CMSG_DST_SUB_ID, .str_name = "TFE_CMSG_DST_SUB_ID", .size = 256},
{.id = 19, .type = TFE_CMSG_SRC_ASN, .str_name = "TFE_CMSG_SRC_ASN", .size = 64},
{.id = 20, .type = TFE_CMSG_DST_ASN, .str_name = "TFE_CMSG_DST_ASN", .size = 64},
{.id = 21, .type = TFE_CMSG_SRC_ORGANIZATION, .str_name = "TFE_CMSG_SRC_ORGANIZATION", .size = 256},
{.id = 22, .type = TFE_CMSG_DST_ORGANIZATION, .str_name = "TFE_CMSG_DST_ORGANIZATION", .size = 256},
{.id = 23, .type = TFE_CMSG_SRC_IP_LOCATION_COUNTRY, .str_name = "TFE_CMSG_SRC_IP_LOCATION_COUNTRY", .size = 256},
{.id = 24, .type = TFE_CMSG_DST_IP_LOCATION_COUNTRY, .str_name = "TFE_CMSG_DST_IP_LOCATION_COUNTRY", .size = 256},
{.id = 25, .type = TFE_CMSG_SRC_IP_LOCATION_PROVINE, .str_name = "TFE_CMSG_SRC_IP_LOCATION_PROVINE", .size = 256},
{.id = 26, .type = TFE_CMSG_DST_IP_LOCATION_PROVINE, .str_name = "TFE_CMSG_DST_IP_LOCATION_PROVINE", .size = 256},
{.id = 27, .type = TFE_CMSG_SRC_IP_LOCATION_CITY, .str_name = "TFE_CMSG_SRC_IP_LOCATION_CITY", .size = 256},
{.id = 28, .type = TFE_CMSG_DST_IP_LOCATION_CITY, .str_name = "TFE_CMSG_DST_IP_LOCATION_CITY", .size = 256},
{.id = 29, .type = TFE_CMSG_SRC_IP_LOCATION_SUBDIVISION, .str_name = "TFE_CMSG_SRC_IP_LOCATION_SUBDIVISION", .size = 256},
{.id = 30, .type = TFE_CMSG_DST_IP_LOCATION_SUBDIVISION, .str_name = "TFE_CMSG_DST_IP_LOCATION_SUBDIVISION", .size = 256},
{.id = 31, .type = TFE_CMSG_SSL_CLIENT_JA3_FINGERPRINT, .str_name = "TFE_CMSG_SSL_CLIENT_JA3_FINGERPRINT", .size = 32},
{.id = 32, .type = TFE_CMSG_FQDN_CAT_ID_VAL, .str_name = "TFE_CMSG_FQDN_CAT_ID_VAL", .size = 4}
};
static int proxy_parse_messagepack(msgpack_object obj, void *ctx)
{
struct ctrl_pkt_parser *handler = (struct ctrl_pkt_parser *)ctx;
uint32_t fqdn_val[8] = {0};
for (unsigned int i = 0; i < obj.via.array.size; i++) {
msgpack_object ptr = obj.via.array.ptr[i];
if (i == 0) {
if (ptr.type == MSGPACK_OBJECT_ARRAY) {
handler->tfe_policy_id_num = ptr.via.array.size;
for (uint32_t j = 0; j < ptr.via.array.size; j++) {
handler->tfe_policy_ids[j] = ptr.via.array.ptr[j].via.u64;
}
tfe_cmsg_set(handler->cmsg, mpack_table[i].type, (const unsigned char *)&handler->tfe_policy_ids[0], sizeof(uint64_t));
TFE_LOG_DEBUG(g_default_logger, "%s: interger msgpack cmsg: [%s] num: [%d]", LOG_TAG_CTRLPKT, mpack_table[i].str_name, handler->tfe_policy_id_num);
for (int j = 0; j < handler->tfe_policy_id_num; j++) {
TFE_LOG_DEBUG(g_default_logger, "%s: policy id:%lu ", LOG_TAG_CTRLPKT, handler->tfe_policy_ids[j]);
}
}
continue;
}
switch (ptr.type) {
case MSGPACK_OBJECT_POSITIVE_INTEGER:
tfe_cmsg_set(handler->cmsg, mpack_table[i].type, (const unsigned char *)&ptr.via.u64, mpack_table[i].size);
TFE_LOG_DEBUG(g_default_logger, "%s: interger msgpack cmsg: [%s] -> [%lu]", LOG_TAG_CTRLPKT, mpack_table[i].str_name, ptr.via.u64);
break;
case MSGPACK_OBJECT_STR:
tfe_cmsg_set(handler->cmsg, mpack_table[i].type, (const unsigned char *)ptr.via.str.ptr, ptr.via.str.size);
TFE_LOG_DEBUG(g_default_logger, "%s: string msgpack cmsg: [%s] -> [%s]", LOG_TAG_CTRLPKT, mpack_table[i].str_name, ptr.via.str.ptr);
break;
case MSGPACK_OBJECT_ARRAY:
if (i == 32) {
tfe_cmsg_set(handler->cmsg, TFE_CMSG_FQDN_CAT_ID_NUM, (const unsigned char *)&ptr.via.array.size, sizeof(uint32_t));
for (uint32_t j = 0; j < ptr.via.array.size; j++) {
fqdn_val[j] = ptr.via.array.ptr[j].via.u64;
TFE_LOG_DEBUG(g_default_logger, "%s: array msgpack cmsg: [%s] -> [%lu]", LOG_TAG_CTRLPKT, mpack_table[i].str_name, ptr.via.array.ptr[j].via.u64);
}
tfe_cmsg_set(handler->cmsg ,TFE_CMSG_FQDN_CAT_ID_VAL, (const unsigned char*)fqdn_val, ptr.via.array.size * sizeof(uint32_t));
}
break;
default:
break;
}
}
return 0;
}
int parse_messagepack(const char* data, size_t length, void *ctx)
{
struct ctrl_pkt_parser *handler = (struct ctrl_pkt_parser *)ctx;
size_t off = 0;
msgpack_unpacked unpacked;
msgpack_unpacked_init(&unpacked);
msgpack_unpack_return ret = msgpack_unpack_next(&unpacked, data, length, &off);
if (ret != MSGPACK_UNPACK_SUCCESS) {
TFE_LOG_DEBUG(g_default_logger, "%s: unexpected control packet: data[%s]", LOG_TAG_CTRLPKT, data);
return -1;
}
msgpack_object obj = unpacked.data;
if (obj.type != MSGPACK_OBJECT_ARRAY || obj.via.array.size < INDEX_PROXY) {
// TFE_LOG_DEBUG(g_default_logger, "%s: unexpected control packet: msgpack type[%02x], array size:%d", LOG_TAG_CTRLPKT, obj.type, obj.via.array.size);
return -1;
}
for (unsigned int i = 0; i < obj.via.array.size; i++) {
msgpack_object ptr = obj.via.array.ptr[i];
switch (i) {
case INDEX_TSYNC:
if (ptr.type == MSGPACK_OBJECT_STR) {
memcpy(handler->tsync, ptr.via.str.ptr, ptr.via.str.size);
}
else {
TFE_LOG_DEBUG(g_default_logger, "%s: unexpected control packet: (invalid tsync type) %02x", LOG_TAG_CTRLPKT, ptr.type);
}
break;
case INDEX_SESSION_ID:
if (ptr.type == MSGPACK_OBJECT_STR) {
char session_id[64] = {0};
memcpy(session_id, ptr.via.str.ptr, ptr.via.str.size);
handler->session_id = atoll(session_id);
}
else {
TFE_LOG_DEBUG(g_default_logger, "%s: unexpected control packet: (invalid session id type) %02x", LOG_TAG_CTRLPKT, ptr.type);
}
break;
case INDEX_STATE:
if (ptr.type == MSGPACK_OBJECT_STR) {
if (strncasecmp(ptr.via.str.ptr, "opening", ptr.via.str.size) == 0)
{
handler->state = SESSION_STATE_OPENING;
}
else if (strncasecmp(ptr.via.str.ptr, "active", ptr.via.str.size) == 0)
{
handler->state = SESSION_STATE_ACTIVE;
}
else if (strncasecmp(ptr.via.str.ptr, "closing", ptr.via.str.size) == 0)
{
handler->state = SESSION_STATE_CLOSING;
}
else if (strncasecmp(ptr.via.str.ptr, "resetall", ptr.via.str.size) == 0)
{
handler->state = SESSION_STATE_RESETALL;
}
else
{
TFE_LOG_DEBUG(g_default_logger, "%s: unexpected control packet: (invalid state value) %s", LOG_TAG_CTRLPKT, ptr.via.str.ptr);
}
}
else {
TFE_LOG_DEBUG(g_default_logger, "%s: unexpected control packet: (invalid state type) %02x", LOG_TAG_CTRLPKT, ptr.type);
}
break;
case INDEX_METHOD:
if (ptr.type == MSGPACK_OBJECT_STR) {
memcpy(handler->method, ptr.via.str.ptr, ptr.via.str.size);
}
else {
TFE_LOG_DEBUG(g_default_logger, "%s: unexpected control packet: (invalid method type) %02x", LOG_TAG_CTRLPKT, ptr.type);
}
break;
case INDEX_SCE:
if (ptr.type == MSGPACK_OBJECT_ARRAY) {
msgpack_object rule_id = ptr.via.array.ptr[0];
handler->sce_policy_id_num = rule_id.via.array.size;
for (uint32_t j = 0; j < rule_id.via.array.size; j++) {
handler->sce_policy_ids[j] = rule_id.via.array.ptr[j].via.u64;
}
}
break;
case INDEX_SHAPER:
break;
case INDEX_PROXY:
if (ptr.type == MSGPACK_OBJECT_ARRAY) {
proxy_parse_messagepack(ptr, handler);
}
else {
TFE_LOG_DEBUG(g_default_logger, "%s: unexpected control packet: (invalid proxy type) %02x", LOG_TAG_CTRLPKT, ptr.type);
}
break;
default:
break;
}
}
return 0;
}

1553
common/src/tfe_packet_io.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,994 @@
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#define __FAVOR_BSD 1
#include <netinet/tcp.h>
#include <netinet/ether.h>
#include <linux/ppp_defs.h>
#include "tfe_utils.h"
#include "uthash.h"
#include "tfe_addr_tuple4.h"
#include "tfe_raw_packet.h"
/******************************************************************************
* Struct
******************************************************************************/
enum parse_status
{
PARSE_STATUS_CONTINUE,
PARSE_STATUS_STOP
};
struct vlan_hdr
{
uint16_t vlan_cfi;
uint16_t protocol;
} __attribute__((__packed__));
struct vxlan_hdr
{
uint8_t flags[2];
uint16_t gdp; // group policy id
uint8_t vni[3];
uint8_t reserved;
} __attribute__((__packed__));
struct gtp_hdr
{
#if __BYTE_ORDER == __LITTLE_ENDIAN
unsigned char flags;
unsigned char msg_type;
unsigned short len;
unsigned int teid;
#elif __BYTE_ORDER == __BIG_ENDIAN
unsigned int teid;
unsigned short len;
unsigned char msg_type;
unsigned char flags;
#else
#error "Please check <endian.h>"
#endif
} __attribute__((__packed__));
#define GTP_HDR_VER_MASK (0xE0)
#define GTP_HDR_FLAG_N_PDU (0x01)
#define GTP_HDR_FLAG_SEQ_NUM (0x02)
#define GTP_HDR_FLAG_NEXT_EXT_HDR (0x04)
/******************************************************************************
* Static API
******************************************************************************/
static int raw_packet_parser_push(struct raw_pkt_parser *handler, enum layer_type type, uint16_t offset);
static enum parse_status raw_packet_parser_status(struct raw_pkt_parser *handler, const void *data, enum layer_type this_type);
static const char *ldbc_method_to_string(enum ldbc_method ldbc_method);
// parser utils
static void set_addr_tuple4(const void *data, enum layer_type layer_type, struct addr_tuple4 *addr);
static const char *layer_type2str(enum layer_type this_type);
static uint16_t parse_gtphdr_len(const struct gtp_hdr *gtph);
// parser protocol
static const void *parse_ether(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type);
static const void *parse_ipv4(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type);
static const void *parse_ipv6(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type);
static const void *parse_tcp(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type);
static const void *parse_udp(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type);
static const void *parse_pppoe_ses(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type);
static const void *parse_vxlan(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type);
static const void *parse_vlan8021q(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type);
static const void *parse_gtpv1_u(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type);
static const void *parse_mpls(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type);
/******************************************************************************
* Public API
******************************************************************************/
void raw_packet_parser_init(struct raw_pkt_parser *handler, uint64_t pkt_trace_id, enum layer_type expect_type, uint16_t expect_results_num)
{
memset(handler, 0, sizeof(struct raw_pkt_parser));
handler->expect_type = expect_type;
handler->results.layers_used = 0;
handler->results.layers_size = MIN(expect_results_num, (sizeof(handler->results.layers) / sizeof(handler->results.layers[0])));
handler->ptr_pkt_start = NULL;
handler->pkt_trace_id = pkt_trace_id;
}
// return most inner payload
const void *raw_packet_parser_parse(struct raw_pkt_parser *handler, const void *data, size_t length)
{
handler->ptr_pkt_start = data;
// TESTED
return parse_ether(handler, data, length, LAYER_TYPE_ETHER);
}
// return 0 : success
// return -1 : error
int raw_packet_parser_get_most_inner_tuple4(struct raw_pkt_parser *handler, struct addr_tuple4 *addr)
{
const char *l3_layer_data = NULL;
const char *l4_layer_data = NULL;
const struct layer_result *l3_layer_result = NULL;
const struct layer_result *l4_layer_result = NULL;
struct layer_results *results = &handler->results;
// search L4 layer and L3 layer in reverse order
for (int8_t i = results->layers_used - 1; i >= 0; i--)
{
const struct layer_result *layer = &results->layers[i];
enum layer_type type = layer->type;
TFE_LOG_DEBUG(g_default_logger, "%s: find most inner tuple4, pkt_trace_id: %lu, layer[%d/%d]: %s", LOG_TAG_RAWPKT, handler->pkt_trace_id, i, results->layers_size, layer_type2str(type));
// first get L4 layer
if (type & LAYER_TYPE_L4)
{
l4_layer_result = layer;
continue;
}
// second get L3 layer
if (type & LAYER_TYPE_L3)
{
l3_layer_result = layer;
break;
}
}
if (l3_layer_result)
{
l3_layer_data = (const char *)handler->ptr_pkt_start + l3_layer_result->offset;
set_addr_tuple4(l3_layer_data, l3_layer_result->type, addr);
}
if (l4_layer_result)
{
l4_layer_data = (const char *)handler->ptr_pkt_start + l4_layer_result->offset;
set_addr_tuple4(l4_layer_data, l4_layer_result->type, addr);
}
if (l3_layer_result && l4_layer_result)
{
return 0;
}
else
{
return -1;
}
}
// return 0 : success
// return -1 : error
int raw_packet_parser_get_most_outer_tuple4(struct raw_pkt_parser *handler, struct addr_tuple4 *addr)
{
const char *l3_layer_data = NULL;
const char *l4_layer_data = NULL;
const struct layer_result *l3_layer_result = NULL;
const struct layer_result *l4_layer_result = NULL;
struct layer_results *results = &handler->results;
// search L3 layer and L4 layer in order
for (int8_t i = 0; i <= results->layers_used - 1; i++)
{
const struct layer_result *layer = &results->layers[i];
enum layer_type type = layer->type;
TFE_LOG_DEBUG(g_default_logger, "%s: find most outer tuple4, pkt_trace_id: %lu, layer[%d/%d]: %s", LOG_TAG_RAWPKT, handler->pkt_trace_id, i, results->layers_size, layer_type2str(type));
// first get L3 layer
if (type & LAYER_TYPE_L3)
{
l3_layer_result = layer;
continue;
}
// second get L4 layer
if (type & LAYER_TYPE_L4)
{
l4_layer_result = layer;
break;
}
}
if (l3_layer_result)
{
l3_layer_data = (const char *)handler->ptr_pkt_start + l3_layer_result->offset;
set_addr_tuple4(l3_layer_data, l3_layer_result->type, addr);
}
if (l4_layer_result)
{
l4_layer_data = (const char *)handler->ptr_pkt_start + l4_layer_result->offset;
set_addr_tuple4(l4_layer_data, l4_layer_result->type, addr);
}
if (l3_layer_result && l4_layer_result)
{
return 0;
}
else
{
return -1;
}
}
// return 0 : success
// return -1 : error
int raw_packet_parser_get_most_inner_address(struct raw_pkt_parser *handler, struct addr_tuple4 *addr)
{
const char *l3_layer_data = NULL;
struct layer_results *results = &handler->results;
// search L3 layer in reverse order
for (int8_t i = results->layers_used - 1; i >= 0; i--)
{
const struct layer_result *layer = &results->layers[i];
enum layer_type type = layer->type;
TFE_LOG_DEBUG(g_default_logger, "%s: find most inner address, pkt_trace_id: %lu, layer[%d/%d]: %s", LOG_TAG_RAWPKT, handler->pkt_trace_id, i, results->layers_size, layer_type2str(type));
if (type & LAYER_TYPE_L3)
{
l3_layer_data = (const char *)handler->ptr_pkt_start + layer->offset;
set_addr_tuple4(l3_layer_data, type, addr);
return 0;
}
}
return -1;
}
// return 0 : success
// return -1 : error
int raw_packet_parser_get_most_outer_address(struct raw_pkt_parser *handler, struct addr_tuple4 *addr)
{
const char *l3_layer_data = NULL;
struct layer_results *results = &handler->results;
// search L3 layer in order
for (int8_t i = 0; i <= results->layers_used - 1; i++)
{
const struct layer_result *layer = &results->layers[i];
enum layer_type type = layer->type;
TFE_LOG_DEBUG(g_default_logger, "%s: find most outer address, pkt_trace_id: %lu, layer[%d/%d]: %s", LOG_TAG_RAWPKT, handler->pkt_trace_id, i, results->layers_size, layer_type2str(type));
if (type & LAYER_TYPE_L3)
{
l3_layer_data = (const char *)handler->ptr_pkt_start + layer->offset;
set_addr_tuple4(l3_layer_data, type, addr);
return 0;
}
}
return -1;
}
uint64_t raw_packet_parser_get_hash_value(struct raw_pkt_parser *handler, enum ldbc_method method, int dir_is_internal)
{
uint64_t temp = 0;
uint64_t hash_value = 1;
int inner_addr_len = 0;
int outer_addr_len = 0;
const char *inner_src_addr = NULL;
const char *inner_dst_addr = NULL;
const char *outer_src_addr = NULL;
const char *outer_dst_addr = NULL;
struct addr_tuple4 inner_addr;
struct addr_tuple4 outer_addr;
memset(&inner_addr, 0, sizeof(inner_addr));
memset(&outer_addr, 0, sizeof(outer_addr));
if (handler == NULL)
{
return hash_value;
}
if (raw_packet_parser_get_most_inner_address(handler, &inner_addr) == -1)
{
return hash_value;
}
if (raw_packet_parser_get_most_outer_address(handler, &outer_addr) == -1)
{
return hash_value;
}
if (inner_addr.addr_type == ADDR_TUPLE4_TYPE_V4)
{
inner_src_addr = (const char *)&(inner_addr.addr_v4.src_addr);
inner_dst_addr = (const char *)&(inner_addr.addr_v4.dst_addr);
inner_addr_len = sizeof(inner_addr.addr_v4.dst_addr);
}
else
{
inner_src_addr = (const char *)&(inner_addr.addr_v6.src_addr);
inner_dst_addr = (const char *)&(inner_addr.addr_v6.dst_addr);
inner_addr_len = sizeof(inner_addr.addr_v6.dst_addr);
}
if (outer_addr.addr_type == ADDR_TUPLE4_TYPE_V4)
{
outer_src_addr = (const char *)&(outer_addr.addr_v4.src_addr);
outer_dst_addr = (const char *)&(outer_addr.addr_v4.dst_addr);
outer_addr_len = sizeof(outer_addr.addr_v4.dst_addr);
}
else
{
outer_src_addr = (const char *)&(outer_addr.addr_v6.src_addr);
outer_dst_addr = (const char *)&(outer_addr.addr_v6.dst_addr);
outer_addr_len = sizeof(outer_addr.addr_v6.dst_addr);
}
switch (method)
{
case LDBC_METHOD_HASH_INT_IP:
if (dir_is_internal)
{
// outer src ip
HASH_VALUE(outer_src_addr, outer_addr_len, hash_value);
}
else
{
// outer dst ip
HASH_VALUE(outer_dst_addr, outer_addr_len, hash_value);
}
break;
case LDBC_METHOD_HASH_EXT_IP:
if (dir_is_internal)
{
// outer dst ip
HASH_VALUE(outer_dst_addr, outer_addr_len, hash_value);
}
else
{
// outer src ip
HASH_VALUE(outer_src_addr, outer_addr_len, hash_value);
}
break;
case LDBC_METHOD_HASH_INT_IP_AND_EXT_IP:
// outer dst ip ^ outer src ip
HASH_VALUE(outer_src_addr, outer_addr_len, hash_value);
HASH_VALUE(outer_dst_addr, outer_addr_len, temp);
hash_value = hash_value ^ temp;
break;
case LDBC_METHOD_HASH_INNERMOST_INT_IP:
if (dir_is_internal)
{
// innner src ip
HASH_VALUE(inner_src_addr, inner_addr_len, hash_value);
}
else
{
// innner dst ip
HASH_VALUE(inner_dst_addr, inner_addr_len, hash_value);
}
break;
case LDBC_METHOD_HASH_INNERMOST_EXT_IP:
if (dir_is_internal)
{
// innner dst ip
HASH_VALUE(inner_dst_addr, inner_addr_len, hash_value);
}
else
{
// innner src ip
HASH_VALUE(inner_src_addr, inner_addr_len, hash_value);
}
break;
default:
return hash_value;
}
char *inner_addr_str = addr_tuple4_to_str(&inner_addr);
char *outer_addr_str = addr_tuple4_to_str(&outer_addr);
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, outer_addr: %s, inner_addr: %s, is_internal: %d, hash_method: %s, hash_value: %lu",
LOG_TAG_RAWPKT, handler->pkt_trace_id, outer_addr_str, inner_addr_str, dir_is_internal, ldbc_method_to_string(method), hash_value);
free(inner_addr_str);
free(outer_addr_str);
return hash_value;
}
/******************************************************************************
* Private API
******************************************************************************/
// return 0 : success
// return -ENOMEM : error
static int raw_packet_parser_push(struct raw_pkt_parser *handler, enum layer_type type, uint16_t offset)
{
struct layer_results *result = &handler->results;
if (result->layers_used >= result->layers_size)
{
return -ENOMEM;
}
result->layers[result->layers_used].offset = offset;
result->layers[result->layers_used].type = type;
result->layers_used++;
return 0;
}
// return PARSE_STATUS_CONTINUE
// return PARSE_STATUS_STOP
static enum parse_status raw_packet_parser_status(struct raw_pkt_parser *handler, const void *data, enum layer_type this_type)
{
/*
* only when this_type & handler->expect_type is true,
* the information of the current layer will be recorded in results.
*/
if (!(this_type & handler->expect_type))
{
return PARSE_STATUS_CONTINUE;
}
uint16_t offset = (uintptr_t)data - (uintptr_t)(handler->ptr_pkt_start);
if (raw_packet_parser_push(handler, this_type, offset) < 0)
{
return PARSE_STATUS_STOP;
}
else
{
return PARSE_STATUS_CONTINUE;
}
}
static const char *ldbc_method_to_string(enum ldbc_method ldbc_method)
{
switch (ldbc_method)
{
case LDBC_METHOD_HASH_INT_IP:
return "outter_internal_ip";
case LDBC_METHOD_HASH_EXT_IP:
return "outter_external_ip";
case LDBC_METHOD_HASH_INT_IP_AND_EXT_IP:
return "outter_internal_ip_and_external_ip";
case LDBC_METHOD_HASH_INNERMOST_INT_IP:
return "inner_internal_ip";
case LDBC_METHOD_HASH_INNERMOST_EXT_IP:
return "inner_external_ip";
default:
return "unknown";
}
}
static void set_addr_tuple4(const void *data, enum layer_type layer_type, struct addr_tuple4 *addr)
{
const struct tcphdr *tcp_hdr = NULL;
const struct udp_hdr *udp_hdr = NULL;
const struct ip *ipv4_hdr = NULL;
const struct ip6_hdr *ipv6_hdr = NULL;
switch (layer_type)
{
case LAYER_TYPE_TCP:
tcp_hdr = (const struct tcphdr *)data;
addr->src_port = tcp_hdr->th_sport;
addr->dst_port = tcp_hdr->th_dport;
break;
case LAYER_TYPE_UDP:
udp_hdr = (const struct udp_hdr *)data;
addr->src_port = udp_hdr->uh_sport;
addr->dst_port = udp_hdr->uh_dport;
break;
case LAYER_TYPE_IPV4:
ipv4_hdr = (const struct ip *)data;
addr->addr_type = ADDR_TUPLE4_TYPE_V4;
addr->addr_v4.src_addr = ipv4_hdr->ip_src;
addr->addr_v4.dst_addr = ipv4_hdr->ip_dst;
break;
case LAYER_TYPE_IPV6:
ipv6_hdr = (const struct ip6_hdr *)data;
addr->addr_type = ADDR_TUPLE4_TYPE_V6;
memcpy(&addr->addr_v6.src_addr, &ipv6_hdr->ip6_src, sizeof(addr->addr_v6.src_addr));
memcpy(&addr->addr_v6.dst_addr, &ipv6_hdr->ip6_dst, sizeof(addr->addr_v6.dst_addr));
break;
default:
break;
}
}
static const char *layer_type2str(enum layer_type this_type)
{
switch (this_type)
{
case LAYER_TYPE_ETHER:
return "ETHER";
case LAYER_TYPE_PPP:
return "PPP";
case LAYER_TYPE_HDLC:
return "HDLC";
case LAYER_TYPE_VLAN:
return "VLAN";
case LAYER_TYPE_PPPOE:
return "PPPOE";
case LAYER_TYPE_MPLS:
return "MPLS";
case LAYER_TYPE_IPV4:
return "IPV4";
case LAYER_TYPE_IPV6:
return "IPV6";
case LAYER_TYPE_UDP:
return "UDP";
case LAYER_TYPE_TCP:
return "TCP";
case LAYER_TYPE_G_VXLAN:
return "G_VXLAN";
case LAYER_TYPE_GTPV1_U:
return "GTPV1_U";
default:
return "UNKNOWN";
}
}
// FROM SAPP
static uint16_t parse_gtphdr_len(const struct gtp_hdr *gtph)
{
const unsigned char *p_ext_hdr = (unsigned char *)gtph + sizeof(struct gtp_hdr);
unsigned char next_hdr_type;
unsigned char this_ext_field_cont_len;
// v0 太古老已废弃,目前仅支持 GTPv1 版本
if (((gtph->flags & GTP_HDR_VER_MASK) >> 5) != 1)
{
return -1;
}
if (gtph->flags & (GTP_HDR_FLAG_SEQ_NUM | GTP_HDR_FLAG_N_PDU | GTP_HDR_FLAG_NEXT_EXT_HDR))
{
// skip seq field (2 bytes)
p_ext_hdr += 2;
// skip N-PDU field (1 byte)
p_ext_hdr++;
// 解析 GTP 扩展头部字段,参考 wireshark 源码 packet-gtp.c->dissect_gtp_common()
next_hdr_type = *p_ext_hdr;
if (gtph->flags & GTP_HDR_FLAG_NEXT_EXT_HDR)
{
while (next_hdr_type != 0)
{
// 指向长度字段, 以4个字节为单位
p_ext_hdr++;
this_ext_field_cont_len = *p_ext_hdr * 4 - 2;
// 指向数据部分第一个字节
p_ext_hdr++;
p_ext_hdr += this_ext_field_cont_len;
// 指向下一个头部字段
next_hdr_type = *p_ext_hdr;
p_ext_hdr++;
}
}
else
{
p_ext_hdr++;
}
}
return (char *)p_ext_hdr - (char *)gtph;
}
static const void *parse_ether(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type)
{
if (length < sizeof(struct ethhdr))
{
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, err: data not enough", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type));
return data;
}
if (raw_packet_parser_status(handler, data, this_type) == PARSE_STATUS_STOP)
{
return data;
}
struct ethhdr *hdr = (struct ethhdr *)data;
uint16_t next_proto = ntohs(hdr->h_proto);
uint16_t hdr_len = sizeof(struct ethhdr);
const void *data_next_layer = (const char *)data + hdr_len;
size_t data_next_length = length - hdr_len;
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
switch (next_proto)
{
case ETH_P_8021Q:
// TESTED
return parse_vlan8021q(handler, data_next_layer, data_next_length, LAYER_TYPE_VLAN);
case ETH_P_8021AD:
// TODO
return parse_ether(handler, data_next_layer, data_next_length, LAYER_TYPE_ETHER);
case ETH_P_IP:
// TESTED
return parse_ipv4(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV4);
case ETH_P_IPV6:
// TESTED
return parse_ipv6(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV6);
case ETH_P_PPP_SES:
// TODO
return parse_pppoe_ses(handler, data_next_layer, data_next_length, LAYER_TYPE_PPPOE);
case ETH_P_MPLS_UC:
// TESTED
return parse_mpls(handler, data_next_layer, data_next_length, LAYER_TYPE_MPLS);
default:
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, stop parse next protocol %d", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), next_proto);
return data_next_layer;
}
}
static const void *parse_ipv4(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type)
{
if (length < sizeof(struct ip))
{
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, err: data not enough", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type));
return data;
}
if (raw_packet_parser_status(handler, data, this_type) == PARSE_STATUS_STOP)
{
return data;
}
struct ip *hdr = (struct ip *)data;
uint16_t next_proto = hdr->ip_p;
uint16_t hdr_len = (hdr->ip_hl & 0xf) * 4u;
const void *data_next_layer = (const char *)data + hdr_len;
size_t data_next_length = length - hdr_len;
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
switch (next_proto)
{
case IPPROTO_TCP:
// TESTED
return parse_tcp(handler, data_next_layer, data_next_length, LAYER_TYPE_TCP);
case IPPROTO_UDP:
// TESTED
return parse_udp(handler, data_next_layer, data_next_length, LAYER_TYPE_UDP);
case IPPROTO_IPIP:
// TESTED
return parse_ipv4(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV4);
case IPPROTO_IPV6:
// TESTED
return parse_ipv6(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV6);
default:
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, stop parse next protocol %d", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), next_proto);
return data_next_layer;
}
}
static const void *parse_ipv6(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type)
{
if (length < sizeof(struct ip6_hdr))
{
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, err: data not enough", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type));
return data;
}
if (raw_packet_parser_status(handler, data, this_type) == PARSE_STATUS_STOP)
{
return data;
}
struct ip6_hdr *hdr = (struct ip6_hdr *)data;
uint16_t next_proto = hdr->ip6_nxt;
uint16_t hdr_len = sizeof(struct ip6_hdr);
const void *data_next_layer = (const char *)data + hdr_len;
size_t data_next_length = length - hdr_len;
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
switch (next_proto)
{
case IPPROTO_TCP:
// TESTED
return parse_tcp(handler, data_next_layer, data_next_length, LAYER_TYPE_TCP);
case IPPROTO_UDP:
// TESTED
return parse_udp(handler, data_next_layer, data_next_length, LAYER_TYPE_UDP);
case IPPROTO_IPIP:
// TESTED
return parse_ipv4(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV4);
case IPPROTO_IPV6:
// TESTED
return parse_ipv6(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV6);
default:
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, stop parse next protocol %d", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), next_proto);
return data_next_layer;
}
}
static const void *parse_tcp(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type)
{
if (length < sizeof(struct tcphdr))
{
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, err: data not enough", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type));
return data;
}
if (raw_packet_parser_status(handler, data, this_type) == PARSE_STATUS_STOP)
{
return data;
}
struct tcphdr *hdr = (struct tcphdr *)data;
uint16_t hdr_len = hdr->th_off << 2;
const void *data_next_layer = (const char *)data + hdr_len;
size_t data_next_length = length - hdr_len;
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
return data_next_layer;
}
static const void *parse_udp(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type)
{
if (length < sizeof(struct udp_hdr))
{
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, err: data not enough", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type));
return data;
}
if (raw_packet_parser_status(handler, data, this_type) == PARSE_STATUS_STOP)
{
return data;
}
struct udp_hdr *hdr = (struct udp_hdr *)data;
uint16_t hdr_len = sizeof(struct udp_hdr);
const void *data_next_layer = (const char *)data + hdr_len;
size_t data_next_length = length - hdr_len;
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
switch (ntohs(hdr->uh_dport))
{
// VXLAN_DPORT
case 4789:
// TESTED
return parse_vxlan(handler, data_next_layer, data_next_length, LAYER_TYPE_G_VXLAN);
// GTP1U_PORT
case 2152:
// TESTED
return parse_gtpv1_u(handler, data_next_layer, data_next_length, LAYER_TYPE_GTPV1_U);
default:
return data_next_layer;
}
}
static const void *parse_pppoe_ses(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type)
{
if (length < 8)
{
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, err: data not enough", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type));
return data;
}
if (raw_packet_parser_status(handler, data, this_type) == PARSE_STATUS_STOP)
{
return data;
}
uint16_t next_proto = *((uint16_t *)data + 3);
uint16_t hdr_len = 8;
const void *data_next_layer = (const char *)data + hdr_len;
size_t data_next_length = length - hdr_len;
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
switch (next_proto)
{
// PPPOE_TYPE_IPV4
case 0x2100:
// TESTED
return parse_ipv4(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV4);
// PPPOE_TYPE_IPV6
case 0x5700:
// TODO
return parse_ipv6(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV6);
default:
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, stop parse next protocol %d", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), next_proto);
return data_next_layer;
}
}
static const void *parse_vxlan(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type)
{
if (length < sizeof(struct vxlan_hdr))
{
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, err: data not enough", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type));
return NULL;
}
if (raw_packet_parser_status(handler, data, this_type) == PARSE_STATUS_STOP)
{
return data;
}
struct vxlan_hdr *vxlan_hdr = (struct vxlan_hdr *)data;
uint16_t hdr_len = sizeof(struct vxlan_hdr);
const void *data_next_layer = (const char *)data + hdr_len;
size_t data_next_length = length - hdr_len;
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
// TESTED
return parse_ether(handler, data_next_layer, data_next_length, LAYER_TYPE_ETHER);
}
static const void *parse_vlan8021q(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type)
{
if (length < sizeof(struct vlan_hdr))
{
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, err: data not enough", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type));
return NULL;
}
if (raw_packet_parser_status(handler, data, this_type) == PARSE_STATUS_STOP)
{
return data;
}
struct vlan_hdr *hdr = (struct vlan_hdr *)data;
uint16_t next_proto = ntohs(hdr->protocol);
uint16_t hdr_len = sizeof(struct vlan_hdr);
const void *data_next_layer = (const char *)data + hdr_len;
size_t data_next_length = length - hdr_len;
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
switch (next_proto)
{
case ETH_P_8021Q:
// TESTED
return parse_vlan8021q(handler, data_next_layer, data_next_length, LAYER_TYPE_VLAN);
case ETH_P_IP:
// TESTED
return parse_ipv4(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV4);
case ETH_P_IPV6:
// TODO
return parse_ipv6(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV6);
case ETH_P_PPP_SES:
// TESTED
return parse_pppoe_ses(handler, data_next_layer, data_next_length, LAYER_TYPE_PPPOE);
case ETH_P_MPLS_UC:
// TODO
return parse_mpls(handler, data_next_layer, data_next_length, LAYER_TYPE_MPLS);
default:
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, stop parse next protocol %d", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), next_proto);
return data_next_layer;
}
}
static const void *parse_gtpv1_u(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type)
{
if (length < sizeof(struct gtp_hdr))
{
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, err: data not enough", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type));
return NULL;
}
uint16_t hdr_len = parse_gtphdr_len((const struct gtp_hdr *)data);
if (hdr_len < 0)
{
return data;
}
if (raw_packet_parser_status(handler, data, this_type) == PARSE_STATUS_STOP)
{
return data;
}
uint8_t next_proto = (((const uint8_t *)((const char *)data + hdr_len))[0]) >> 4;
const void *data_next_layer = (const char *)data + hdr_len;
size_t data_next_length = length - hdr_len;
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
switch (next_proto)
{
case 4:
// TESTED
return parse_ipv4(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV4);
case 6:
// TESTED
return parse_ipv6(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV6);
default:
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, stop parse next protocol %d", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), next_proto);
return data_next_layer;
}
}
static const void *parse_mpls(struct raw_pkt_parser *handler, const void *data, size_t length, enum layer_type this_type)
{
if (length < 4)
{
TFE_LOG_ERROR(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, err: data not enough", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type));
return data;
}
if (raw_packet_parser_status(handler, data, this_type) == PARSE_STATUS_STOP)
{
return data;
}
#define MPLS_LABEL_MASK (0xFFFFF000)
#define MPLS_EXP_MASK (0x00000E00)
#define MPLS_BLS_MASK (0x00000100)
#define MPLS_TTL_MASK (0x000000FF)
/*
* MPLS Format
* 0 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Label | Exp |S| TTL |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* Label : Label Value 20 bits
* Exp : Experimental Use 3 bits
* S : Bottom of Stack 1 bit
* TTL : Time to Live 8 bits
*/
uint32_t *hdr = (uint32_t *)data;
// unsigned int mpls_label = (ntohl(*hdr) & MPLS_LABEL_MASK) >> 12;
// unsigned int mpls_exp = (ntohl(*hdr) & MPLS_EXP_MASK) >> 9;
unsigned int mpls_bls = (ntohl(*hdr) & MPLS_BLS_MASK) >> 8;
// unsigned int mpls_ttl = (ntohl(*hdr) & MPLS_TTL_MASK);
uint16_t hdr_len = 4;
const void *data_next_layer = (const char *)data + hdr_len;
size_t data_next_length = length - hdr_len;
if (mpls_bls == 1)
{
uint8_t ip_version = (((uint8_t *)data_next_layer)[0]) >> 4;
if (ip_version == 0)
{
/*
* PW Ethernet Control Word
* 0 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |0 0 0 0| Reserved | Sequence Number |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* Reference: https://tools.ietf.org/html/rfc4448
*/
data_next_layer = (const char *)data_next_layer + 4;
data_next_length = data_next_length - 4;
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
// TESTED
return parse_ether(handler, data_next_layer, data_next_length, LAYER_TYPE_ETHER);
}
else if (ip_version == 4)
{
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
// TESTED
return parse_ipv4(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV4);
}
else if (ip_version == 6)
{
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
// TODO
return parse_ipv6(handler, data_next_layer, data_next_length, LAYER_TYPE_IPV6);
}
else
{
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
// TODO
return parse_ether(handler, data_next_layer, data_next_length, LAYER_TYPE_ETHER);
}
}
else
{
TFE_LOG_DEBUG(g_default_logger, "%s: pkt_trace_id: %lu, this_layer: %s, payload_len: [%lu/%lu]", LOG_TAG_RAWPKT, handler->pkt_trace_id, layer_type2str(this_type), data_next_length, length);
// TESTED
return parse_mpls(handler, data_next_layer, data_next_length, LAYER_TYPE_MPLS);
}
}

View File

@@ -0,0 +1,219 @@
#include <assert.h>
#include "tfe_session_table.h"
#include <tfe_utils.h>
struct session_table
{
struct session_node *root_by_id;
struct session_node *root_by_addr;
uint64_t session_node_count;
};
// Note: session_addr must be initialized by memset(0) before use !!!
struct session_table *session_table_create()
{
struct session_table *table = (struct session_table *)calloc(1, sizeof(struct session_table));
assert(table);
table->session_node_count = 0;
return table;
}
void session_table_destory(struct session_table *table)
{
if (table)
{
struct session_node *temp = NULL;
struct session_node *node = NULL;
HASH_ITER(hh1, table->root_by_id, node, temp)
{
HASH_DELETE(hh1, table->root_by_id, node);
HASH_DELETE(hh2, table->root_by_addr, node);
if (node->val_freecb && node->val_data)
{
node->val_freecb(node->val_data);
}
free(node);
node = NULL;
}
free(table);
table = NULL;
}
}
void session_table_reset(struct session_table *table)
{
if (table)
{
struct session_node *temp = NULL;
struct session_node *node = NULL;
HASH_ITER(hh1, table->root_by_id, node, temp)
{
HASH_DELETE(hh1, table->root_by_id, node);
HASH_DELETE(hh2, table->root_by_addr, node);
if (node->val_freecb && node->val_data)
{
node->val_freecb(node->val_data);
}
free(node);
node = NULL;
table->session_node_count--;
}
}
}
uint64_t session_table_count(struct session_table *table)
{
if (table)
{
return table->session_node_count;
}
else
{
return 0;
}
}
// session_addr : deep copy
// val_data : shallow copy (malloc by user, free by val_freecb)
int session_table_insert(struct session_table *table, uint64_t session_id, const struct addr_tuple4 *session_addr, void *val_data, const fn_free_cb *val_freecb)
{
struct session_node *temp = NULL;
HASH_FIND(hh1, table->root_by_id, &session_id, sizeof(session_id), temp);
if (temp)
{
TFE_LOG_DEBUG(g_default_logger, "%s: insert: key %lu exists", LOG_TAG_STABLE, session_id);
return -1;
}
temp = (struct session_node *)calloc(1, sizeof(struct session_node));
assert(temp);
temp->session_id = session_id;
memcpy(&temp->session_addr, session_addr, sizeof(struct addr_tuple4));
temp->val_data = val_data;
temp->val_freecb = val_freecb;
HASH_ADD(hh1, table->root_by_id, session_id, sizeof(temp->session_id), temp);
HASH_ADD(hh2, table->root_by_addr, session_addr, sizeof(temp->session_addr), temp);
TFE_LOG_DEBUG(g_default_logger, "%s: insert: key %lu success", LOG_TAG_STABLE, session_id);
table->session_node_count++;
return 0;
}
int session_table_delete_by_id(struct session_table *table, uint64_t session_id)
{
struct session_node *temp = NULL;
HASH_FIND(hh1, table->root_by_id, &session_id, sizeof(session_id), temp);
if (!temp)
{
TFE_LOG_DEBUG(g_default_logger, "%s: delete: key %lu not exists", LOG_TAG_STABLE, session_id);
return -1;
}
HASH_DELETE(hh1, table->root_by_id, temp);
HASH_DELETE(hh2, table->root_by_addr, temp);
if (temp->val_freecb && temp->val_data)
{
temp->val_freecb(temp->val_data);
temp->val_data = NULL;
}
free(temp);
temp = NULL;
TFE_LOG_DEBUG(g_default_logger, "%s: delete: key %lu success", LOG_TAG_STABLE, session_id);
table->session_node_count--;
return 0;
}
int session_table_delete_by_addr(struct session_table *table, const struct addr_tuple4 *session_addr)
{
struct session_node *temp = NULL;
char *addr_str = addr_tuple4_to_str(session_addr);
HASH_FIND(hh2, table->root_by_addr, session_addr, sizeof(struct addr_tuple4), temp);
if (!temp)
{
struct addr_tuple4 reverse_addr;
addr_tuple4_reverse(session_addr, &reverse_addr);
HASH_FIND(hh2, table->root_by_addr, &reverse_addr, sizeof(struct addr_tuple4), temp);
if (!temp)
{
TFE_LOG_DEBUG(g_default_logger, "%s: delete: key %s not exists", LOG_TAG_STABLE, addr_str);
free(addr_str);
return -1;
}
}
HASH_DELETE(hh1, table->root_by_id, temp);
HASH_DELETE(hh2, table->root_by_addr, temp);
if (temp->val_freecb && temp->val_data)
{
temp->val_freecb(temp->val_data);
temp->val_data = NULL;
}
free(temp);
temp = NULL;
TFE_LOG_DEBUG(g_default_logger, "%s: delete: key %s success", LOG_TAG_STABLE, addr_str);
free(addr_str);
addr_str = NULL;
table->session_node_count--;
return 0;
}
struct session_node *session_table_search_by_id(struct session_table *table, uint64_t session_id)
{
struct session_node *temp = NULL;
HASH_FIND(hh1, table->root_by_id, &session_id, sizeof(session_id), temp);
if (!temp)
{
TFE_LOG_DEBUG(g_default_logger, "%s: search: key %lu not exists", LOG_TAG_STABLE, session_id);
return NULL;
}
TFE_LOG_DEBUG(g_default_logger, "%s: search: key %lu success", LOG_TAG_STABLE, session_id);
return temp;
}
struct session_node *session_table_search_by_addr(struct session_table *table, const struct addr_tuple4 *session_addr)
{
struct session_node *temp = NULL;
char *addr_str = addr_tuple4_to_str(session_addr);
HASH_FIND(hh2, table->root_by_addr, session_addr, sizeof(struct addr_tuple4), temp);
if (!temp)
{
struct addr_tuple4 reverse_addr;
addr_tuple4_reverse(session_addr, &reverse_addr);
HASH_FIND(hh2, table->root_by_addr, &reverse_addr, sizeof(struct addr_tuple4), temp);
if (!temp)
{
TFE_LOG_DEBUG(g_default_logger, "%s: search: key %s not exists", LOG_TAG_STABLE, addr_str);
free(addr_str);
addr_str = NULL;
return NULL;
}
}
TFE_LOG_DEBUG(g_default_logger, "%s: search: key %s success", LOG_TAG_STABLE, addr_str);
free(addr_str);
addr_str = NULL;
return temp;
}

389
common/src/tfe_tap_rss.cpp Normal file
View File

@@ -0,0 +1,389 @@
#include <fcntl.h>
#include <sys/ioctl.h>
#include <stdlib.h>
#include <pthread.h>
#include <stdarg.h>
#include <arpa/inet.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/udp.h>
#include <linux/if_tun.h>
#include <signal.h>
#include <assert.h>
#include <MESA/MESA_prof_load.h>
#include <net/if.h>
#include <unistd.h>
#if (SUPPORT_BPF)
#include "../../bpf/bpf_conf_user.h"
#include <bpf/bpf.h>
#include <bpf/libbpf.h>
#endif
#include "tfe_acceptor_kni.h"
#include "tfe_tap_rss.h"
#include "tfe_utils.h"
#ifndef TUN_PATH
#define TUN_PATH "/dev/net/tun"
#endif
struct bpf_ctx
{
int bpf_prog_fd;
int bpf_map_fd;
char bpf_file[1024];
#if (SUPPORT_BPF)
struct bpf_object *bpf_obj;
bpf_conf_t bpf_conf;
#endif
};
int tfe_tap_get_bpf_prog_fd(struct bpf_ctx *ctx)
{
if (ctx)
{
return ctx->bpf_prog_fd;
}
else
{
return -1;
}
}
#if (SUPPORT_BPF)
void tfe_tap_global_unload_rss_bpf(struct bpf_ctx *ctx)
{
if (ctx)
{
if (ctx->bpf_prog_fd > 0)
{
close(ctx->bpf_prog_fd);
}
if (ctx->bpf_obj)
{
bpf_object__close(ctx->bpf_obj);
ctx->bpf_obj = NULL;
}
free(ctx);
ctx = NULL;
}
}
#else
void tfe_tap_global_unload_rss_bpf(struct bpf_ctx *ctx)
{
}
#endif
/*
* bpf_queue_num : worker thread number
* bpf_default_queue : -1: for disable(only use for debug, rss to one queue)
* bpf_hash_mode : 2: hash with src/dst addr
* 4: hash with src/dst addr and src/dst port
* bpf_debug_log : 0 for disable(only use for debug, printf bpf debug log)
*/
#if (SUPPORT_BPF)
struct bpf_ctx *tfe_tap_global_load_rss_bpf(const char *bpf_obj_file, uint32_t bpf_queue_num, uint32_t bpf_hash_mode, uint32_t bpf_debug_log, void *logger)
{
struct bpf_ctx *ctx = (struct bpf_ctx *)calloc(1, sizeof(struct bpf_ctx));
strncpy(ctx->bpf_file, bpf_obj_file, strlen(bpf_obj_file));
bpf_conf_set_debug_log(&ctx->bpf_conf, bpf_debug_log);
bpf_conf_set_hash_mode(&ctx->bpf_conf, bpf_hash_mode);
bpf_conf_set_queue_num(&ctx->bpf_conf, bpf_queue_num);
if (bpf_prog_load(ctx->bpf_file, BPF_PROG_TYPE_SOCKET_FILTER, &ctx->bpf_obj, &ctx->bpf_prog_fd) < 0)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "unable to load bpf object %s, aborting: %s", ctx->bpf_file, strerror(errno));
goto error;
}
if (bpf_conf_update_map(&ctx->bpf_conf, ctx->bpf_obj) == -1)
{
goto error;
}
return ctx;
error:
tfe_tap_global_unload_rss_bpf(ctx);
return NULL;
}
#else
struct bpf_ctx *tfe_tap_global_load_rss_bpf(const char *bpf_obj_file, uint32_t bpf_queue_num, uint32_t bpf_hash_mode, uint32_t bpf_debug_log, void *logger)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "not support bpf");
return NULL;
}
#endif
struct tap_ctx *tfe_tap_ctx_create(void *ctx)
{
struct acceptor_thread_ctx *thread_ctx = (struct acceptor_thread_ctx *)ctx;
struct acceptor_ctx *acceptor_ctx = thread_ctx->ref_acceptor_ctx;
struct tap_ctx *tap_ctx = (struct tap_ctx *)calloc(1, sizeof(struct tap_ctx));
assert(tap_ctx != NULL);
tap_ctx->tap_fd = tfe_tap_open_per_thread(acceptor_ctx->config->tap_device, IFF_TAP | IFF_NO_PI | IFF_MULTI_QUEUE, tfe_tap_get_bpf_prog_fd(acceptor_ctx->config->tap_bpf_ctx), g_default_logger);
tap_ctx->tap_c = tfe_tap_open_per_thread(acceptor_ctx->config->tap_c_device, IFF_TAP | IFF_NO_PI | IFF_MULTI_QUEUE, tfe_tap_get_bpf_prog_fd(acceptor_ctx->config->tap_bpf_ctx), g_default_logger);
tap_ctx->tap_s = tfe_tap_open_per_thread(acceptor_ctx->config->tap_s_device, IFF_TAP | IFF_NO_PI | IFF_MULTI_QUEUE, tfe_tap_get_bpf_prog_fd(acceptor_ctx->config->tap_bpf_ctx), g_default_logger);
return tap_ctx;
}
struct tap_config *tfe_tap_config_create(const char *profile, int thread_num)
{
int ret = 0;
int tap_allow_mutilthread = 0;
uint32_t bpf_debug_log = 0;
uint32_t bpf_hash_mode = 2;
uint32_t bpf_queue_num = thread_num;
char bpf_obj[1024] = {0};
struct tap_config *tap = (struct tap_config *)calloc(1, sizeof(struct tap_config));
assert(tap != NULL);
MESA_load_profile_int_nodef(profile, "tap", "tap_rps_enable", &tap->tap_rps_enable);
MESA_load_profile_string_def(profile, "tap", "tap_name", tap->tap_device, sizeof(tap->tap_device), "tap0");
MESA_load_profile_string_def(profile, "traffic_steering", "device_client", tap->tap_c_device, sizeof(tap->tap_c_device), "tap_c");
MESA_load_profile_string_def(profile, "traffic_steering", "device_server", tap->tap_s_device, sizeof(tap->tap_s_device), "tap_s");
MESA_load_profile_int_nodef(profile, "tap", "bpf_debug_log", (int *)&bpf_debug_log);
MESA_load_profile_int_nodef(profile, "tap", "bpf_hash_mode", (int *)&bpf_hash_mode);
MESA_load_profile_string_nodef(profile, "tap", "bpf_obj", bpf_obj, sizeof(bpf_obj));
MESA_load_profile_int_nodef(profile, "tap", "tap_allow_mutilthread", &tap_allow_mutilthread);
MESA_load_profile_int_nodef(profile, "io_uring", "enable_iouring", &tap->enable_iouring);
MESA_load_profile_int_nodef(profile, "io_uring", "enable_debuglog", &tap->enable_debuglog);
MESA_load_profile_int_nodef(profile, "io_uring", "ring_size", &tap->ring_size);
MESA_load_profile_int_nodef(profile, "io_uring", "buff_size", &tap->buff_size);
MESA_load_profile_int_nodef(profile, "io_uring", "flags", &tap->flags);
MESA_load_profile_int_nodef(profile, "io_uring", "sq_thread_idle", &tap->sq_thread_idle);
char src_mac_addr_str[TFE_SYMBOL_MAX];
ret = MESA_load_profile_string_nodef(profile, "system", "src_mac_addr", src_mac_addr_str, sizeof(src_mac_addr_str));
if(ret < 0){
TFE_LOG_ERROR(g_default_logger, "MESA_prof_load: src_mac_addr not set, profile = %s, section = system", profile);
goto error_out;
}
str_to_mac(src_mac_addr_str, tap->src_mac);
get_mac_by_device_name(tap->tap_device, tap->tap_mac);
get_mac_by_device_name(tap->tap_c_device, tap->tap_c_mac);
get_mac_by_device_name(tap->tap_s_device, tap->tap_s_mac);
if (tap->tap_rps_enable)
{
if (MESA_load_profile_string_nodef(profile, "tap", "tap_rps_mask", tap->tap_rps_mask, sizeof(tap->tap_rps_mask)) < 0)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "under tap mode, when enable tap_rps_enable, tap_rps_mask is required.");
goto error_out;
}
}
if (tap_allow_mutilthread)
{
tap->tap_bpf_ctx = tfe_tap_global_load_rss_bpf(bpf_obj, bpf_queue_num, bpf_hash_mode, bpf_debug_log, g_default_logger);
if (tap->tap_bpf_ctx == NULL)
{
goto error_out;
}
}
else if (thread_num > 1){
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "under tap mode, when disable tap_allow_mutilthread, only support one work thread.");
goto error_out;
}
return tap;
error_out:
tfe_tap_destory(tap);
return NULL;
}
void tfe_tap_destory(struct tap_config *tap)
{
if (tap)
{
if (tap->tap_bpf_ctx)
{
tfe_tap_global_unload_rss_bpf(tap->tap_bpf_ctx);
tap->tap_bpf_ctx = NULL;
}
free(tap);
tap = NULL;
}
}
int tfe_tap_set_rps(void *local_logger, const char *tap_name, int thread_num, const char *rps_mask)
{
char file[1024] = {0};
memset(file, 0, sizeof(file));
snprintf(file, sizeof(file), "/sys/class/net/%s/queues/rx-%d/rps_cpus", tap_name, thread_num);
FILE *fp = fopen(file, "w");
if (fp == NULL)
{
TFE_LOG_ERROR(local_logger, "%s can't open %s, %s", TAP_RSS_LOG_TAG, file, strerror(errno));
return -1;
}
fwrite(rps_mask, strlen(rps_mask), 1, fp);
TFE_LOG_DEBUG(local_logger, TAP_RSS_LOG_TAG "set rps '%s' to %s", rps_mask, file);
fclose(fp);
return 0;
}
int tfe_tap_open_per_thread(const char *tap_dev, int tap_flags, int bpf_prog_fd, void *logger)
{
int fd = -1;
int tap_fd = -1;
int nonblock_flags = -1;
struct ifreq ifr;
tap_fd = open(TUN_PATH, O_RDWR);
if (tap_fd == -1)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "unable to open " TUN_PATH ", aborting: %s", strerror(errno));
return -1;
}
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_flags = tap_flags;
strcpy(ifr.ifr_name, tap_dev);
if (ioctl(tap_fd, TUNSETIFF, &ifr) == -1)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "unable to attach %s, aborting: %s", tap_dev, strerror(errno));
goto error;
}
/*
* The TUNSETPERSIST ioctl can be used to make the TUN/TAP interface persistent.
* In this mode, the interface won't be destroyed when the last process closes the associated /dev/net/tun file descriptor.
*/
/*
if (ioctl(tap_fd, TUNSETPERSIST, 1) == -1)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "unable to set persist on %s, aborting: %s", tap_dev, strerror(errno));
goto error;
}
*/
#if (SUPPORT_BPF)
if (bpf_prog_fd > 0)
{
// Set bpf
if (ioctl(tap_fd, TUNSETSTEERINGEBPF, (void *)&bpf_prog_fd) == -1)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "unable to set bpf on %s, aborting: %s", tap_dev, strerror(errno));
goto error;
}
}
#endif
// Set nonblock
nonblock_flags = fcntl(tap_fd, F_GETFL);
if (nonblock_flags == -1)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "unable to get nonblock flags on %s fd, aborting: %s", tap_dev, strerror(errno));
goto error;
}
nonblock_flags |= O_NONBLOCK;
if (fcntl(tap_fd, F_SETFL, nonblock_flags) == -1)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "unable to set nonblock flags on %s fd, aborting: %s", tap_dev, strerror(errno));
goto error;
}
// Get MTU
fd = socket(PF_INET, SOCK_DGRAM, 0);
if (fd == -1)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "unable to create socket, aborting: %s", strerror(errno));
goto error;
}
memset(&ifr, 0, sizeof(ifr));
strcpy(ifr.ifr_name, tap_dev);
if (ioctl(fd, SIOCGIFMTU, &ifr) < 0)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "unable to get MTU on %s, aborting: %s", tap_dev, strerror(errno));
goto error;
}
// Set eth up
if (ioctl(fd, SIOCGIFFLAGS, &ifr) == -1)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "unable to get link status on %s, aborting: %s", tap_dev, strerror(errno));
goto error;
}
if ((ifr.ifr_flags & IFF_UP) == 0)
{
ifr.ifr_flags |= IFF_UP;
if (ioctl(fd, SIOCSIFFLAGS, &ifr) < 0)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "unable to set link status on %s, aborting: %s", tap_dev, strerror(errno));
goto error;
}
}
TFE_LOG_INFO(logger, TAP_RSS_LOG_TAG "using tap device %s with MTU %d", tap_dev, ifr.ifr_mtu);
close(fd);
return tap_fd;
error:
if (fd > 0)
{
close(fd);
fd = -1;
}
if (tap_fd > 0)
{
close(tap_fd);
tap_fd = -1;
}
return -1;
}
void tfe_tap_close_per_thread(int tap_fd)
{
if (tap_fd > 0)
{
close(tap_fd);
}
}
int tfe_tap_read_per_thread(int tap_fd, char *buff, int buff_size, void *logger)
{
int ret = read(tap_fd, buff, buff_size);
if (ret < 0)
{
if (errno != EWOULDBLOCK && errno != EAGAIN)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "unable to read data from tapfd %d, aborting: %s", tap_fd, strerror(errno));
}
}
return ret;
}
int tfe_tap_write_per_thread(int tap_fd, const char *data, int data_len, void *logger)
{
int ret = write(tap_fd, data, data_len);
if (ret != data_len)
{
TFE_LOG_ERROR(g_default_logger, TAP_RSS_LOG_TAG "need send %dB, only send %dB, aborting: %s", data_len, ret, strerror(errno));
}
return ret;
}

View File

@@ -0,0 +1,65 @@
#include <time.h>
#include <stdlib.h>
#include <tfe_utils.h>
#include "tfe_timestamp.h"
// 1 s = 1000 ms
// 1 ms = 1000 us
// 1 us = 1000 ns
struct timestamp
{
struct timespec timestamp;
uint64_t update_interval_ms;
};
struct timestamp *timestamp_new(uint64_t update_interval_ms)
{
struct timestamp *ts = (struct timestamp *)calloc(1, sizeof(struct timestamp));
ts->update_interval_ms = update_interval_ms;
timestamp_update(ts);
TFE_LOG_DEBUG(g_default_logger, "%s: TIMESTAMP->update_interval_ms : %lu", LOG_TAG_TIMESTAMP, timestamp_update_interval_ms(ts));
TFE_LOG_DEBUG(g_default_logger, "%s: TIMESTAMP->current_sec : %lu", LOG_TAG_TIMESTAMP, timestamp_get_sec(ts));
TFE_LOG_DEBUG(g_default_logger, "%s: TIMESTAMP->current_msec : %lu", LOG_TAG_TIMESTAMP, timestamp_get_msec(ts));
return ts;
}
void timestamp_free(struct timestamp *ts)
{
if (ts)
{
free(ts);
ts = NULL;
}
}
void timestamp_update(struct timestamp *ts)
{
struct timespec temp;
clock_gettime(CLOCK_MONOTONIC, &temp);
ATOMIC_SET(&(ts->timestamp.tv_sec), temp.tv_sec);
ATOMIC_SET(&(ts->timestamp.tv_nsec), temp.tv_nsec);
}
uint64_t timestamp_update_interval_ms(struct timestamp *ts)
{
return ts->update_interval_ms;
}
uint64_t timestamp_get_sec(struct timestamp *ts)
{
uint64_t sec = ATOMIC_READ(&(ts->timestamp.tv_sec));
return sec;
}
uint64_t timestamp_get_msec(struct timestamp *ts)
{
uint64_t sec = ATOMIC_READ(&(ts->timestamp.tv_sec));
uint64_t nsec = ATOMIC_READ(&(ts->timestamp.tv_nsec));
return sec * 1000 + nsec / 1000000;
}

View File

@@ -6,6 +6,12 @@
#include <tfe_utils.h>
#include <time.h>
#include <assert.h>
#include <netinet/ip.h>
#include <netinet/ether.h>
#include <arpa/inet.h>
#include <net/if.h>
#include <sys/ioctl.h>
#include <unistd.h>
//functioned as strdup, for dictator compatible.
char* tfe_strdup(const char* s)
@@ -215,4 +221,173 @@ int tfe_decode_base64url(u_char *dst, u_char *src)
};
return tfe_decode_base64_internal(dst, src, basis64);
}
}
/******************************************************************************
* sids
******************************************************************************/
void sids_write_once(struct sids *dst, struct sids *src)
{
if (dst && src)
{
if (dst->num == 0 && src->num > 0)
{
sids_copy(dst, src);
}
}
}
void sids_copy(struct sids *dst, struct sids *src)
{
if (dst && src)
{
dst->num = src->num;
memcpy(dst->elems, src->elems, sizeof(dst->elems[0]) * dst->num);
}
}
/******************************************************************************
* route_ctx
******************************************************************************/
int route_ctx_is_empty(struct route_ctx *ctx)
{
if (ctx->len == 0)
{
return 1;
}
else
{
return 0;
}
}
void route_ctx_copy(struct route_ctx *dst, struct route_ctx *src)
{
memcpy(dst->data, src->data, src->len);
dst->len = src->len;
}
/******************************************************************************
* protocol
******************************************************************************/
#define CHECKSUM_CARRY(x) (x = (x >> 16) + (x & 0xffff), (~(x + (x >> 16)) & 0xffff))
static int checksum(u_int16_t *addr, int len)
{
int sum = 0;
int nleft = len;
u_int16_t ans = 0;
u_int16_t *w = addr;
while (nleft > 1)
{
sum += *w++;
nleft -= 2;
}
if (nleft == 1)
{
*(char *)(&ans) = *(char *)w;
sum += ans;
}
return sum;
}
void build_udp_header(const char *l3_hdr, int l3_hdr_len, struct udp_hdr *udp_hdr, u_int16_t udp_sport, u_int16_t udp_dport, int payload_len)
{
memset(udp_hdr, 0, sizeof(struct udp_hdr));
int udp_hlen = sizeof(struct udp_hdr) + payload_len;
udp_hdr->uh_sport = htons(udp_sport);
udp_hdr->uh_dport = htons(udp_dport);
udp_hdr->uh_ulen = htons(udp_hlen);
udp_hdr->uh_sum = 0;
int sum = checksum((u_int16_t *)l3_hdr, l3_hdr_len);
sum += ntohs(IPPROTO_UDP + udp_hlen);
sum += checksum((u_int16_t *)udp_hdr, udp_hlen);
udp_hdr->uh_sum = CHECKSUM_CARRY(sum);
}
void build_ip_header(struct ip *ip_hdr, u_int8_t next_protocol, const char *src_addr, const char *dst_addr, uint16_t payload_len)
{
memset(ip_hdr, 0, sizeof(struct ip));
ip_hdr->ip_hl = 5; /* 20 byte header */
ip_hdr->ip_v = 4; /* version 4 */
ip_hdr->ip_tos = 0; /* IP tos */
ip_hdr->ip_id = htons(random()); /* IP ID */
ip_hdr->ip_ttl = 80; /* time to live */
ip_hdr->ip_p = next_protocol; /* transport protocol */
ip_hdr->ip_src.s_addr = inet_addr(src_addr);
ip_hdr->ip_dst.s_addr = inet_addr(dst_addr);
ip_hdr->ip_len = htons(sizeof(struct ip) + payload_len); /* total length */
ip_hdr->ip_off = htons(0); /* fragmentation flags */
ip_hdr->ip_sum = 0; /* do this later */
int sum = checksum((u_int16_t *)ip_hdr, 20);
ip_hdr->ip_sum = CHECKSUM_CARRY(sum);
}
// l3_protocol: ETH_P_IPV6/ETH_P_IP
void build_ether_header(struct ethhdr *eth_hdr, uint16_t next_protocol, const char *src_mac, const char *dst_mac)
{
memset(eth_hdr, 0, sizeof(struct ethhdr));
str_to_mac(src_mac, (char *)eth_hdr->h_source);
str_to_mac(dst_mac, (char *)eth_hdr->h_dest);
eth_hdr->h_proto = htons(next_protocol);
}
int str_to_mac(const char *str, char *mac_buff)
{
if (sscanf(str, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx", &(mac_buff[0]), &(mac_buff[1]), &(mac_buff[2]), &(mac_buff[3]), &(mac_buff[4]), &(mac_buff[5])) == 6)
{
return 0;
}
else
{
return -1;
}
}
int get_mac_by_device_name(const char *dev_name, char *mac_buff)
{
int fd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
if (fd == -1)
{
return -1;
}
struct ifreq ifr;
memset(&ifr, 0, sizeof(struct ifreq));
strcpy(ifr.ifr_name, dev_name);
if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
{
close(fd);
return -1;
}
unsigned char *mac = (unsigned char *)ifr.ifr_hwaddr.sa_data;
sprintf(mac_buff, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
close(fd);
return 0;
}
/******************************************************************************
* throughput_metrics
******************************************************************************/
void throughput_metrics_inc(struct throughput_metrics *iterm, uint64_t n_pkts, uint64_t n_bytes)
{
__atomic_fetch_add(&iterm->n_bytes, n_bytes, __ATOMIC_RELAXED);
__atomic_fetch_add(&iterm->n_pkts, n_pkts, __ATOMIC_RELAXED);
}