/* ********************************************************************************************** * File: maat_hierarchy.cpp * Description: * Authors: Zheng Chao * Date: 2022-10-31 * Copyright: (c) 2018-2022 Geedge Networks, Inc. All rights reserved. *********************************************************************************************** */ #include #include #include "utils.h" #include "maat_utils.h" #include "log/log.h" #include "uthash/utarray.h" #include "uthash/uthash.h" #include "bool_matcher.h" #include "igraph/igraph.h" #include "maat_hierarchy.h" #include "maat_garbage_collection.h" #include "maat_group.h" #include "maat/maat.h" #define MODULE_HIERARCHY module_name_str("maat.hierarchy") struct maat_hierarchy_clause_state { unsigned long long clause_id; char not_flag; char in_use; UT_array *literal_ids; }; struct maat_hierarchy_compile { unsigned int magic; int compile_id; int actual_clause_num; int declared_clause_num; int not_clause_cnt; void *user_data; UT_hash_handle hh; struct maat_hierarchy_clause_state clause_states[MAX_ITEMS_PER_BOOL_EXPR]; }; struct maat_hierarchy_literal_id { int group_id; int vt_id; }; struct maat_hierarchy_clause { long long clause_id; size_t n_literal_id; struct maat_hierarchy_literal_id *literal_ids; UT_hash_handle hh; }; struct item2clause_key { int item_id; int vt_id; }; struct group2item { int group_id; UT_array *item_ids; UT_hash_handle hh; //index to }; struct item2clause_value { struct item2clause_key key; UT_array *clause_ids; int group_id; UT_hash_handle hh; //index to }; struct maat_hierarchy_internal_hit_path { int Nth_scan; int Nth_hit_item; int item_id; int virtual_table_id; }; struct maat_hierarchy { pthread_rwlock_t rwlock; time_t version; //After full update, clause id may indicate a different clause. Comparing hier->version and mid->hier_ver can prevent false positive match. int changed_flag; struct maat_hierarchy_compile *hash_compile_by_id; //key: compile_id, value: struct maat_hierarchy_compile*. void (* compile_user_data_free)(void *compile_ud); struct maat_hierarchy_item *hash_item_by_id; //key: item_id, value: struct maat_hierarchy_item*. struct maat_hierarchy_clause *hash_dedup_clause_by_literals; //key: literal combination, value: struct maat_hierarchy_clause*. For generating unique clause_id. unsigned long long clause_id_generator; //Increasing number. void (* item_user_data_free)(void *item_ud); /*Following members are accessed from scan threads.*/ struct item2clause_value *hash_item2clause; //key: item_id+virtual_table_id, value: struct item2clause_value. struct bool_matcher *bm; struct maat_group_topology *ref_group_topo; int thread_num; struct maat_garbage_bin *ref_garbage_bin; struct log_handle *logger; struct bool_expr_match *expr_match_buff; }; struct maat_hierarchy_compile_mid { int thread_id; int Nth_scan; time_t hier_ver; size_t this_scan_item_hit_cnt; int not_clause_hitted_flag; int is_no_count_scan; size_t hit_path_cnt; UT_array *internal_hit_paths; UT_array *all_hit_clause_array; UT_array *this_scan_hit_clause_ids; }; struct maat_hierarchy *maat_hierarchy_new(int thread_num, struct maat_garbage_bin *bin, struct log_handle *logger) { struct maat_hierarchy *hier = ALLOC(struct maat_hierarchy, 1); UNUSED int ret = 0; hier->logger = logger; hier->thread_num = thread_num; hier->version = time(NULL); hier->hash_compile_by_id = NULL; hier->hash_item2clause = NULL; hier->hash_item_by_id = NULL; hier->hash_dedup_clause_by_literals = NULL; hier->clause_id_generator = 0; hier->ref_garbage_bin = bin; hier->expr_match_buff = ALLOC(struct bool_expr_match, thread_num * MAX_SCANNER_HIT_NUM); ret = pthread_rwlock_init(&hier->rwlock, NULL); assert(ret == 0); return hier; } UT_icd ut_literal_id_icd = {sizeof(struct maat_hierarchy_literal_id), NULL, NULL, NULL}; UT_icd ut_clause_id_icd = {sizeof(unsigned long long), NULL, NULL, NULL}; UT_icd ut_item_id_icd = {sizeof(int), NULL, NULL, NULL}; UT_icd ut_hit_path_icd = {sizeof(struct maat_hierarchy_internal_hit_path), NULL, NULL, NULL}; #define MAAT_HIER_COMPILE_MAGIC 0x4a5b6c7d static struct maat_hierarchy_compile *maat_hierarchy_compile_new(struct maat_hierarchy *hier, int compile_id) { struct maat_hierarchy_compile *compile = NULL; compile = ALLOC(struct maat_hierarchy_compile, 1); compile->magic = MAAT_HIER_COMPILE_MAGIC; compile->compile_id = compile_id; HASH_ADD_INT(hier->hash_compile_by_id, compile_id, compile); for(int i = 0; i < MAX_ITEMS_PER_BOOL_EXPR; i++) { utarray_new(compile->clause_states[i].literal_ids, &ut_literal_id_icd); compile->clause_states[i].in_use=0; } return compile; } static void maat_hierarchy_compile_free(struct maat_hierarchy_compile *compile) { struct maat_hierarchy_clause_state *clause_state = NULL; //user_data must be freed before calling this function. assert(compile->user_data == NULL); for (int i = 0; i < MAX_ITEMS_PER_BOOL_EXPR; i++) { clause_state = compile->clause_states + i; utarray_free(clause_state->literal_ids); clause_state->literal_ids = NULL; clause_state->in_use = 0; } compile->magic = 0; free(compile); } void maat_hierarchy_free_item2clause_hash(struct item2clause_value* hash) { struct item2clause_value *i2c_val = NULL, *tmp_i2c_val = NULL; HASH_ITER(hh, hash, i2c_val, tmp_i2c_val) { HASH_DEL(hash, i2c_val); utarray_free(i2c_val->clause_ids); free(i2c_val); } assert(hash == NULL); } static struct maat_hierarchy_item * maat_hierarchy_item_new(struct maat_hierarchy *hier, int item_id, int group_id, struct maat_group *parent_group, void *user_data) { struct maat_hierarchy_item *item = NULL; item = ALLOC(struct maat_hierarchy_item, 1); item->group_id = group_id; item->item_id = item_id; item->ref_parent_group = parent_group; item->user_data = user_data; HASH_ADD_INT(hier->hash_item_by_id, item_id, item); parent_group->ref_by_item_cnt++; return item; } static void maat_hierarchy_item_free(struct maat_hierarchy *hier, struct maat_hierarchy_item *item) { HASH_DELETE(hh, hier->hash_item_by_id, item); item->ref_parent_group->ref_by_item_cnt--; if (hier->item_user_data_free && item->user_data) { hier->item_user_data_free(item->user_data); item->user_data = NULL; } free(item); } static const struct maat_hierarchy_clause * maat_hierarchy_clause_fetch(struct maat_hierarchy *hier, struct maat_hierarchy_literal_id *literal_ids, size_t n_literal_id) { struct maat_hierarchy_clause *clause = NULL; HASH_FIND(hh, hier->hash_dedup_clause_by_literals, literal_ids, n_literal_id * sizeof(struct maat_hierarchy_literal_id), clause); if (!clause) { clause = ALLOC(struct maat_hierarchy_clause, 1); clause->clause_id = hier->clause_id_generator; clause->n_literal_id = n_literal_id; clause->literal_ids = ALLOC(struct maat_hierarchy_literal_id, n_literal_id); memcpy(clause->literal_ids, literal_ids, n_literal_id * sizeof(struct maat_hierarchy_literal_id)); hier->clause_id_generator++; HASH_ADD_KEYPTR(hh, hier->hash_dedup_clause_by_literals, clause->literal_ids, n_literal_id * sizeof(struct maat_hierarchy_literal_id), clause); } return clause; } static void maat_hierarchy_clause_free(struct maat_hierarchy *hier, struct maat_hierarchy_clause *clause) { HASH_DELETE(hh, hier->hash_dedup_clause_by_literals, clause); free(clause->literal_ids); clause->n_literal_id = 0; free(clause); } void maat_hierarchy_free(struct maat_hierarchy *hier) { struct maat_hierarchy_compile *compile = NULL, *tmp_compile = NULL; struct item2clause_value *i2c_val = NULL, *tmp_i2c_val = NULL; struct maat_hierarchy_item *item = NULL, *tmp_item = NULL; struct maat_hierarchy_clause *clause = NULL, *tmp_clause = NULL; pthread_rwlock_wrlock(&hier->rwlock); //Reference: https://troydhanson.github.io/uthash/userguide.html#_what_can_it_do //Some have asked how uthash cleans up its internal memory. //The answer is simple: when you delete the final item from a hash table, //uthash releases all the internal memory associated with that hash table, //and sets its pointer to NULL. HASH_ITER(hh, hier->hash_compile_by_id, compile, tmp_compile) { if (hier->compile_user_data_free && compile->user_data) { hier->compile_user_data_free(compile->user_data); compile->user_data = NULL; } HASH_DEL(hier->hash_compile_by_id, compile); maat_hierarchy_compile_free(compile); } assert(hier->hash_compile_by_id == NULL); HASH_ITER(hh, hier->hash_item2clause, i2c_val, tmp_i2c_val) { HASH_DEL(hier->hash_item2clause, i2c_val); utarray_free(i2c_val->clause_ids); free(i2c_val); } maat_hierarchy_free_item2clause_hash(hier->hash_item2clause); HASH_ITER(hh, hier->hash_item_by_id, item, tmp_item) { maat_hierarchy_item_free(hier, item); } HASH_ITER(hh, hier->hash_dedup_clause_by_literals, clause, tmp_clause) { maat_hierarchy_clause_free(hier, clause); } bool_matcher_free(hier->bm); hier->bm = NULL; pthread_rwlock_unlock(&hier->rwlock); pthread_rwlock_destroy(&hier->rwlock); FREE(hier->expr_match_buff); FREE(hier); } size_t print_igraph_vector(igraph_vector_t *v, char *buff, size_t sz) { int printed = 0; for (long int i = 0; i < igraph_vector_size(v); i++) { printed += snprintf(buff + printed, sz - printed, " %li", (long int)VECTOR(*v)[i]); } return printed; } static struct bool_matcher *maat_hierarchy_build_bool_matcher(struct maat_hierarchy *hier) { struct bool_matcher *bm = NULL; size_t compile_num = 0, expr_cnt = 0; struct bool_expr *bool_expr_array = NULL; struct maat_hierarchy_compile *compile = NULL, *tmp_compile = NULL; struct maat_hierarchy_clause_state *clause_state = NULL; const struct maat_hierarchy_clause *clause = NULL; size_t i = 0, j = 0; int has_clause_num = 0; compile_num = HASH_COUNT(hier->hash_compile_by_id); if (0 == compile_num) { log_error(hier->logger, MODULE_HIERARCHY, "No compile to build."); return NULL; } //STEP 1, update clause_id of each compile and literal struct maat_hierarchy_literal_id *literal_ids = NULL; size_t n_literal_id = 0; HASH_ITER(hh, hier->hash_compile_by_id, compile, tmp_compile) { has_clause_num = 0; for (i = 0; i < MAX_ITEMS_PER_BOOL_EXPR; i++) { clause_state = compile->clause_states + i; clause_state->clause_id = 0; if (!clause_state->in_use) { continue; } has_clause_num++; literal_ids = (struct maat_hierarchy_literal_id *)utarray_eltptr(clause_state->literal_ids, 0); n_literal_id = utarray_len(clause_state->literal_ids); clause = maat_hierarchy_clause_fetch(hier, literal_ids, n_literal_id); clause_state->clause_id = clause->clause_id; } assert(has_clause_num == compile->actual_clause_num); } //STEP 2, serial compile clause states to a bool expression array. compile_num = HASH_COUNT(hier->hash_compile_by_id); bool_expr_array = ALLOC(struct bool_expr, compile_num); HASH_ITER(hh, hier->hash_compile_by_id, compile, tmp_compile) { for (i = 0, j = 0; i < MAX_ITEMS_PER_BOOL_EXPR; i++) { if (compile->clause_states[i].in_use) { if (compile->clause_states[i].not_flag) { compile->not_clause_cnt++; } bool_expr_array[expr_cnt].items[j].item_id = compile->clause_states[i].clause_id; bool_expr_array[expr_cnt].items[j].not_flag = compile->clause_states[i].not_flag; j++; } } //some compile may have zero groups, e.g. default policy. if (j == (size_t)compile->declared_clause_num && j > 0) { bool_expr_array[expr_cnt].expr_id = compile->compile_id; bool_expr_array[expr_cnt].user_tag = compile; bool_expr_array[expr_cnt].item_num = j; expr_cnt++; } } //STEP 3, build the bool matcher. size_t mem_size = 0; if (0 == expr_cnt) { log_error(hier->logger, MODULE_HIERARCHY, "No bool expression to build."); goto error_out; } bm = bool_matcher_new(bool_expr_array, expr_cnt, &mem_size); if (bm != NULL) { log_info(hier->logger, MODULE_HIERARCHY, "Build bool matcher of %zu expressions with %zu bytes memory.", expr_cnt, mem_size); } else { log_error(hier->logger, MODULE_HIERARCHY, "Build bool matcher failed!"); } error_out: FREE(bool_expr_array); return bm; } static inline int compare_clause_id(const void *a, const void *b) { long long ret = *(const unsigned long long *)a - *(const unsigned long long *)b; if (0 == ret) { return 0; } else if(ret < 0) { return -1; } else { return 1; } } static inline int compare_item_id(const void *a, const void *b) { return (*(int*)a - *(int*)b); } struct item2clause_value *maat_hierarchy_build_item2clause_hash(struct maat_hierarchy *hier) { size_t i = 0, j = 0, k = 0; struct maat_hierarchy_compile *compile = NULL, *tmp_compile = NULL; struct maat_hierarchy_literal_id *literal_id = NULL; struct maat_hierarchy_clause_state *clause_state = NULL; struct maat_hierarchy_item *item = NULL, *tmp_item = NULL; struct maat_group *group = NULL; struct group2item *g2i_hash = NULL, *g2i = NULL, *g2i_tmp = NULL; struct item2clause_value *item2clause_hash = NULL, *i2c_val = NULL; struct item2clause_key i2c_key; //Build a temporary hash that maps group to its items. HASH_ITER(hh, hier->hash_item_by_id, item, tmp_item) { group = item->ref_parent_group; for (i = 0; i < group->top_group_cnt; i++) { HASH_FIND_INT(g2i_hash, group->top_group_ids+i, g2i); if (!g2i) { g2i = ALLOC(struct group2item, 1); utarray_new(g2i->item_ids, &ut_item_id_icd); utarray_reserve(g2i->item_ids, group->ref_by_item_cnt); g2i->group_id = group->top_group_ids[i]; HASH_ADD_INT(g2i_hash, group_id, g2i); } //One item belongs to one group, one group may have many items. So duplicate item check is unnecessary. //if(utarray_find(g2i->item_ids, &(item->item_id), compare_item_id)) assert(0); utarray_push_back(g2i->item_ids, &(item->item_id)); //utarray_sort(g2i->item_ids, compare_item_id); } } //Build short cut hash that maps item_id+vt_id to clause_ids. HASH_ITER(hh, hier->hash_compile_by_id, compile, tmp_compile) { for (i = 0; i < MAX_ITEMS_PER_BOOL_EXPR; i++) { clause_state = compile->clause_states + i; if (!clause_state->in_use) { continue; } for (j = 0; j < utarray_len(clause_state->literal_ids); j++) { literal_id = (struct maat_hierarchy_literal_id *)utarray_eltptr(clause_state->literal_ids, j); HASH_FIND(hh_group_id, hier->hash_group_by_id, &(literal_id->group_id), sizeof(literal_id->group_id), group); if (!group) { continue; } HASH_FIND_INT(g2i_hash, &(group->group_id), g2i); //group declared by compile, but has no subordinate or item. if (!g2i) { continue; } for (k = 0; k < utarray_len(g2i->item_ids); k++) { i2c_key.item_id = *((int*)utarray_eltptr(g2i->item_ids, k)); i2c_key.vt_id = literal_id->vt_id; HASH_FIND(hh, item2clause_hash, &i2c_key, sizeof(i2c_key), i2c_val); if (!i2c_val) { i2c_val = ALLOC(struct item2clause_value, 1); i2c_val->key = i2c_key; i2c_val->group_id = g2i->group_id; utarray_new(i2c_val->clause_ids, &ut_clause_id_icd); HASH_ADD(hh, item2clause_hash, key, sizeof(i2c_val->key), i2c_val); } if (utarray_find(i2c_val->clause_ids, &(clause_state->clause_id), compare_clause_id)) { continue; } utarray_push_back(i2c_val->clause_ids, &(clause_state->clause_id)); utarray_sort(i2c_val->clause_ids, compare_clause_id); } } } } int tmp1 = 0, tmp2 = 0; HASH_ITER(hh, g2i_hash, g2i, g2i_tmp) { HASH_DEL(g2i_hash, g2i); //Sanity Check utarray_sort(g2i->item_ids, compare_item_id); for (i = 1; i < utarray_len(g2i->item_ids); i++) { tmp1 = *((int*)utarray_eltptr(g2i->item_ids, i-1)); tmp2 = *((int*)utarray_eltptr(g2i->item_ids, i)); assert(tmp1!=tmp2); } utarray_free(g2i->item_ids); g2i->item_ids = NULL; free(g2i); } log_info(hier->logger, MODULE_HIERARCHY, "Build item2clause hash with %llu element.", HASH_COUNT(item2clause_hash)); return item2clause_hash; } int maat_hierarchy_rebuild(struct maat_hierarchy *hier) { int ret=0; struct bool_matcher *new_bm = NULL, *old_bm = NULL; struct item2clause_value *new_item2clause_hash = NULL, *old_item2clause_hash = NULL; //Read hier from update thread is OK. if (!hier->changed_flag) { return ret; } ret = maat_group_topology_build_top_groups(hier->ref_group_topo); new_bm = maat_hierarchy_build_bool_matcher(hier); new_item2clause_hash = maat_hierarchy_build_item2clause_hash(hier); pthread_rwlock_wrlock(&hier->rwlock); old_bm = hier->bm; old_item2clause_hash = hier->hash_item2clause; hier->bm = new_bm; hier->hash_item2clause = new_item2clause_hash; hier->changed_flag = 0; pthread_rwlock_unlock(&hier->rwlock); maat_garbage_bagging(hier->ref_garbage_bin, old_bm, (void (*)(void*))bool_matcher_free); maat_garbage_bagging(hier->ref_garbage_bin, old_item2clause_hash, (void (*)(void*))maat_hierarchy_free_item2clause_hash); return ret; } static int maat_hierarchy_compile_has_literal(struct maat_hierarchy_compile *compile, struct maat_hierarchy_literal_id *literal_id) { if (NULL == compile || NULL == literal_id) { return 0; } for (int i = 0; i < MAX_ITEMS_PER_BOOL_EXPR; i++) { struct maat_hierarchy_clause_state *clause_state = compile->clause_states + i; if (!clause_state->in_use) { continue; } struct maat_hierarchy_literal_id *tmp = (struct maat_hierarchy_literal_id *)utarray_find(clause_state->literal_ids, literal_id, compare_literal_id); if (tmp) { assert(tmp->group_id == literal_id->group_id && tmp->vt_id == literal_id->vt_id); return 1; } } return 0; } static int maat_hierarchy_is_hit_path_existed(const struct maat_hit_path *hit_paths, size_t n_path, const struct maat_hit_path *find) { if (NULL == hit_paths || NULL == find) { return 0; } for (size_t i = 0; i < n_path; i++) { if (0 == memcmp(hit_paths + i, find, sizeof(*find))) { return 1; } } return 0; } size_t maat_hierarchy_get_hit_paths(struct maat_hierarchy *hier, struct maat_hierarchy_compile_mid *mid, struct maat_hit_path *hit_paths, size_t n_path) { struct maat_hierarchy_internal_hit_path *p = NULL; struct maat_hierarchy_item *item = NULL; struct maat_group *group = NULL; struct maat_hierarchy_compile *compile = NULL; struct maat_hierarchy_literal_id literal_id = {0, 0}; size_t n_made_by_item = 0, n_made_by_compile = 0; size_t i = 0, j = 0, bool_match_ret = 0; struct bool_expr_match *expr_match = hier->expr_match_buff + mid->thread_id * MAX_SCANNER_HIT_NUM; struct maat_hit_path tmp_path; if (hier->version != mid->hier_ver) { return 0; } pthread_rwlock_rdlock(&hier->rwlock); for (i = 0; i < utarray_len(mid->internal_hit_paths); i++) { p = (struct maat_hierarchy_internal_hit_path *)utarray_eltptr(mid->internal_hit_paths, i); HASH_FIND_INT(hier->hash_item_by_id, &(p->item_id), item); if (!item) { continue; } group = item->ref_parent_group; if (group->top_group_cnt == 0 && n_made_by_item < n_path) { hit_paths[n_made_by_item].Nth_scan = p->Nth_scan; hit_paths[n_made_by_item].item_id = p->item_id; hit_paths[n_made_by_item].sub_group_id = group->group_id; hit_paths[n_made_by_item].top_group_id = -1; hit_paths[n_made_by_item].virtual_table_id = p->virtual_table_id; hit_paths[n_made_by_item].compile_id = -1; n_made_by_item++; } else { for (j = 0; j < group->top_group_cnt && n_made_by_item < n_path; j++, n_made_by_item++) { hit_paths[n_made_by_item].Nth_scan = p->Nth_scan; hit_paths[n_made_by_item].item_id = p->item_id; hit_paths[n_made_by_item].sub_group_id = group->group_id; hit_paths[n_made_by_item].top_group_id = group->top_group_ids[j]; hit_paths[n_made_by_item].virtual_table_id = p->virtual_table_id; hit_paths[n_made_by_item].compile_id = -1; } } } bool_match_ret = bool_matcher_match(hier->bm, (unsigned long long *)utarray_eltptr(mid->all_hit_clause_array, 0), utarray_len(mid->all_hit_clause_array), expr_match, MAX_SCANNER_HIT_NUM); for (i = 0; i < bool_match_ret; i++) { compile = (struct maat_hierarchy_compile *)expr_match[i].user_tag; assert(compile->magic == MAAT_HIER_COMPILE_MAGIC); assert((unsigned long long)compile->compile_id == expr_match[i].expr_id); if (compile->actual_clause_num == 0 || !compile->user_data) { continue; } for (j = 0; j < n_made_by_item && n_made_by_item + n_made_by_compile < n_path; j++) { if (hit_paths[j].top_group_id < 0) { continue; } literal_id.group_id = hit_paths[j].top_group_id; literal_id.vt_id = hit_paths[j].virtual_table_id; if (maat_hierarchy_compile_has_literal(compile, &literal_id)) { if (hit_paths[j].compile_id < 0) { hit_paths[j].compile_id = compile->compile_id; } else { tmp_path = hit_paths[j]; tmp_path.compile_id=compile->compile_id; if (maat_hierarchy_is_hit_path_existed(hit_paths, n_made_by_item + n_made_by_compile, &tmp_path)) { hit_paths[n_made_by_item + n_made_by_compile] = tmp_path; n_made_by_compile++; } } } } } pthread_rwlock_unlock(&hier->rwlock); return (n_made_by_item + n_made_by_compile); } void maat_hierarchy_set_compile_user_data_free_func(struct maat_hierarchy *hier, void (* func)(void *)) { hier->compile_user_data_free = func; } void maat_hierarchy_set_item_user_data_free_func(struct maat_hierarchy *hier, void (* func)(void *)) { hier->item_user_data_free = func; } struct maat_hierarchy_compile_mid *maat_hierarchy_compile_mid_new(struct maat_hierarchy *hier, int thread_id) { struct maat_hierarchy_compile_mid *mid = ALLOC(struct maat_hierarchy_compile_mid, 1); mid->thread_id = thread_id; mid->hier_ver = hier->version; utarray_new(mid->internal_hit_paths, &ut_hit_path_icd); utarray_new(mid->all_hit_clause_array, &ut_clause_id_icd); utarray_new(mid->this_scan_hit_clause_ids, &ut_clause_id_icd); return mid; } void maat_hierarchy_compile_mid_free(struct maat_hierarchy_compile_mid *mid) { utarray_free(mid->internal_hit_paths); utarray_free(mid->all_hit_clause_array); utarray_free(mid->this_scan_hit_clause_ids); free(mid); } static int maat_hierarchy_hit_path_add(UT_array *hit_paths, int item_id, int virtual_table_id, int Nth_scan, int Nth_item_result) { struct maat_hierarchy_internal_hit_path new_path; new_path.item_id = item_id; new_path.Nth_hit_item = Nth_item_result; new_path.Nth_scan = Nth_scan; new_path.virtual_table_id = virtual_table_id; utarray_push_back(hit_paths, &new_path); return 1; } void maat_hierarchy_compile_mid_update(struct maat_hierarchy *hier, struct maat_hierarchy_compile_mid *mid, int item_id, int virtual_table_id, int Nth_scan, int Nth_item_result) { if (mid->Nth_scan != Nth_scan) { assert(mid->this_scan_item_hit_cnt == 0); mid->Nth_scan = Nth_scan; utarray_clear(mid->this_scan_hit_clause_ids); } int ret = maat_hierarchy_hit_path_add(mid->internal_hit_paths, item_id, virtual_table_id, Nth_scan, Nth_item_result); if (!ret) { return; } mid->hit_path_cnt++; mid->this_scan_item_hit_cnt++; struct item2clause_value* i2c_val = NULL; struct item2clause_key i2c_key; i2c_key.item_id = item_id; i2c_key.vt_id = virtual_table_id; HASH_FIND(hh, hier->hash_item2clause, &i2c_key, sizeof(i2c_key), i2c_val); if (!i2c_val) { return; } size_t i = 0; unsigned long long *clause_id = 0; size_t new_clause_idx = utarray_len(mid->this_scan_hit_clause_ids); for (size_t i = 0; i < utarray_len(r2c_val->clause_ids); i++) { clause_id = (unsigned long long *)utarray_eltptr(r2c_val->clause_ids, i); if (utarray_find(mid->all_hit_clause_array, clause_id, compare_clause_id)) { continue; } utarray_push_back(mid->this_scan_hit_clause_ids, clause_id); } if (utarray_len(mid->this_scan_hit_clause_ids) - new_clause_idx) { utarray_reserve(mid->all_hit_clause_array, utarray_len(mid->this_scan_hit_clause_ids) - new_clause_idx); for (i = new_clause_idx; i < utarray_len(mid->this_scan_hit_clause_ids); i++) { clause_id = (unsigned long long *)utarray_eltptr(mid->this_scan_hit_clause_ids, i); utarray_push_back(mid->all_hit_clause_array, clause_id); } utarray_sort(mid->all_hit_clause_array, compare_clause_id); } } int maat_hierarchy_compile_mid_has_NOT_clause(struct maat_hierarchy_compile_mid *mid) { return mid->not_clause_hitted_flag; } int maat_hierarchy_compile_add(struct maat_hierarchy *hier, int compile_id, int declared_clause_num, void *user_data) { int ret = 0; struct maat_hierarchy_compile *compile = NULL; pthread_rwlock_wrlock(&hier->rwlock); hier->changed_flag = 1; HASH_FIND_INT(hier->hash_compile_by_id, &compile_id, compile); if (!compile) { assert(declared_clause_num >= 0); compile = maat_hierarchy_compile_new(hier, compile_id); compile->declared_clause_num = declared_clause_num; compile->user_data = user_data; } else { if (compile->user_data != NULL) { log_error(hier->logger, MODULE_HIERARCHY, "Add compile %d failed, compile is already exisited.", compile_id); ret = -1; } else { compile->declared_clause_num = declared_clause_num; compile->user_data = user_data; } } pthread_rwlock_unlock(&hier->rwlock); return ret; } int maat_hierarchy_compile_remove(struct maat_hierarchy *hier, int compile_id) { int ret = 0; struct maat_hierarchy_compile *compile = NULL; pthread_rwlock_wrlock(&hier->rwlock); hier->changed_flag = 1; HASH_FIND_INT(hier->hash_compile_by_id, &compile_id, compile); if (compile) { if (hier->compile_user_data_free && compile->user_data) { hier->compile_user_data_free(compile->user_data); compile->user_data = NULL; } if (0 == compile->actual_clause_num) { HASH_DEL(hier->hash_compile_by_id, compile); maat_garbage_bagging(hier->ref_garbage_bin, compile, (void (*)(void*))maat_hierarchy_compile_free); } ret = 0; } else { log_error(hier->logger, MODULE_HIERARCHY, "Remove compile %d failed, compile is not exisited.", compile_id); ret = -1; } pthread_rwlock_unlock(&hier->rwlock); return ret; } static void *maat_hier_compile_get_user_data(struct maat_hierarchy* hier, int compile_id, int is_dettach) { struct maat_hierarchy_compile *compile = NULL; void *ret = NULL; pthread_rwlock_rdlock(&hier->rwlock); HASH_FIND_INT(hier->hash_compile_by_id, &compile_id, compile); if (compile) { ret = compile->user_data; if (is_dettach) { compile->user_data = NULL; } } pthread_rwlock_unlock(&hier->rwlock); return ret; } void *maat_hierarchy_compile_dettach_user_data(struct maat_hierarchy *hier, int compile_id) { return maat_hier_compile_get_user_data(hier, compile_id, 1); } void *maat_hierarchy_compile_read_user_data(struct maat_hierarchy *hier, int compile_id) { return maat_hier_compile_get_user_data(hier, compile_id, 0); } void maat_hierarchy_compile_user_data_iterate(struct maat_hierarchy *hier, void (*callback)(void *user_data, void *param), void *param) { struct maat_hierarchy_compile *compile = NULL, *tmp_compile = NULL; pthread_rwlock_rdlock(&hier->rwlock); HASH_ITER(hh, hier->hash_compile_by_id, compile, tmp_compile) { if (compile->user_data) { callback(compile->user_data, param); } } pthread_rwlock_unlock(&hier->rwlock); } static int maat_hierarchy_compile_has_clause(struct maat_hierarchy_compile* compile, unsigned long long clause_id) { struct maat_hierarchy_clause_state *clause_state = NULL; for (size_t i = 0; i < MAX_ITEMS_PER_BOOL_EXPR; i++) { clause_state = compile->clause_states + i; if (!clause_state->in_use) { continue; } if (clause_state->clause_id == clause_id) { return 1; } } return 0; } static size_t maat_hierarchy_compile_mid_if_new_hit_compile(struct maat_hierarchy_compile_mid *mid, struct maat_hierarchy_compile *compile) { size_t r_in_c_cnt = 0; unsigned long long new_hit_clause_id = 0; for(size_t i = 0; ithis_scan_hit_clause_ids); i++) { new_hit_clause_id = *(unsigned long long*)utarray_eltptr(mid->this_scan_hit_clause_ids, i); int ret = maat_hierarchy_compile_has_clause(compile, new_hit_clause_id); if (ret) { r_in_c_cnt++; } } return r_in_c_cnt; } int maat_hierarchy_item_compile(struct maat_hierarchy *hier, struct maat_hierarchy_compile_mid *mid, int is_last_compile, void **user_data_array, size_t ud_array_sz) { int bool_match_ret = 0, i = 0; struct maat_hierarchy_compile *compile = NULL; struct bool_expr_match *expr_match = hier->expr_match_buff + (mid->thread_id * MAX_SCANNER_HIT_NUM); size_t r_in_c_cnt = 0; size_t ud_result_cnt = 0; size_t this_scan_item_hits = mid->this_scan_item_hit_cnt; if (!hier->bm || 0 == utarray_len(mid->all_hit_clause_array) || hier->version != mid->hier_ver) { mid->this_scan_item_hit_cnt = 0; return 0; } bool_match_ret = bool_matcher_match(hier->bm, (unsigned long long *)utarray_eltptr(mid->all_hit_clause_array, 0), utarray_len(mid->all_hit_clause_array), expr_match, MAX_SCANNER_HIT_NUM); for (i = 0; i < bool_match_ret && ud_result_cnt < ud_array_sz; i++) { compile = (struct maat_hierarchy_compile *)expr_match[i].user_tag; assert(compile->magic == MAAT_HIER_COMPILE_MAGIC); assert((unsigned long long)compile->compile_id == expr_match[i].expr_id); if (0 == compile->actual_clause_num) { continue; } r_in_c_cnt = maat_hierarchy_compile_mid_if_new_hit_compile(mid, compile); if (compile->not_clause_cnt > 0 && !is_last_compile) { mid->not_clause_hitted_flag = 1; } else if(compile->user_data) { //For compile may be dettached by Maat_hierarchy_compile_dettach_user_data, only return non-NULL userdata. if (r_in_c_cnt > 0 || //compile hitted becasue of new reigon this_scan_item_hits == 0) //or hit a compile that refer a NOT-logic group in previous scan. { user_data_array[ud_result_cnt]=compile->user_data; ud_result_cnt++; } } } mid->this_scan_item_hit_cnt = 0; return ud_result_cnt; } void *maat_hierarchy_item_dettach_user_data(struct maat_hierarchy *hier, int item_id) { struct maat_hierarchy_item *item = NULL; void *ret = NULL; pthread_rwlock_wrlock(&hier->rwlock); hier->changed_flag = 1; HASH_FIND_INT(hier->hash_item_by_id, &item_id, item); if (item) { ret = item->user_data; item->user_data = NULL; } pthread_rwlock_unlock(&hier->rwlock); return ret; } int compare_literal_id(const void *pa, const void *pb) { struct maat_hierarchy_literal_id *la = (struct maat_hierarchy_literal_id *)pa; struct maat_hierarchy_literal_id *lb = (struct maat_hierarchy_literal_id *)pb; int ret = la->vt_id - lb->vt_id; if (ret == 0) { ret = la->group_id - lb->group_id; } return ret; } static int maat_hierarchy_compile_add_literal(struct maat_hierarchy_compile *compile, struct maat_hierarchy_literal_id *literal_id, int not_flag, int clause_index) { struct maat_hierarchy_literal_id *tmp = NULL; struct maat_hierarchy_clause_state *clause_state = compile->clause_states + clause_index; clause_state->not_flag = not_flag; if (!clause_state->in_use) { clause_state->in_use = 1; compile->actual_clause_num++; } tmp = (struct maat_hierarchy_literal_id *)utarray_find(clause_state->literal_ids, literal_id, compare_literal_id); if (tmp) { assert(*(unsigned long long*)tmp == *(unsigned long long*)(literal_id)); return -1; } else { utarray_push_back(clause_state->literal_ids, literal_id); utarray_sort(clause_state->literal_ids, compare_literal_id); } return 0; } static int maat_hierarchy_compile_remove_literal(struct maat_hierarchy_compile *compile, struct maat_hierarchy_literal_id *literal_id, int clause_index) { struct maat_hierarchy_literal_id *tmp = NULL; struct maat_hierarchy_clause_state *clause_state = compile->clause_states + clause_index; tmp = (struct maat_hierarchy_literal_id *)utarray_find(clause_state->literal_ids, literal_id , compare_literal_id); if (tmp) { assert(*(unsigned long long*)tmp == *(unsigned long long*)(literal_id)); } else { return -1; } size_t remove_idx = utarray_eltidx(clause_state->literal_ids, tmp); utarray_erase(clause_state->literal_ids, remove_idx, 1); if (0 == utarray_len(clause_state->literal_ids)) { clause_state->in_use = 0; compile->actual_clause_num--; } return 0; } int maat_hierarchy_add_group_to_compile(struct maat_hierarchy *hier, int group_id, int vt_id, int not_flag, int clause_index, int compile_id) { int ret = 0; struct maat_group *group = NULL; struct maat_hierarchy_literal_id literal_id = {group_id, vt_id}; struct maat_hierarchy_compile *compile = NULL; pthread_rwlock_wrlock(&hier->rwlock); hier->changed_flag = 1; HASH_FIND(hh, hier->hash_compile_by_id, &compile_id, sizeof(compile_id), compile); if (!compile) { compile = maat_hierarchy_compile_new(hier, compile_id); } ret = maat_hierarchy_compile_add_literal(compile, &literal_id, not_flag, clause_index); if (ret < 0) { log_error(hier->logger, MODULE_HIERARCHY, "Add group %d vt_id %d to clause %d of compile %d failed, group is already exisited.", group_id, vt_id, clause_index, compile_id); ret = -1; } else { ret = 0; } pthread_rwlock_unlock(&hier->rwlock); return ret; } int maat_hierarchy_remove_group_from_compile(struct maat_hierarchy *hier, int group_id, int vt_id, int not_flag, int clause_index, int compile_id) { struct maat_hierarchy_literal_id literal_id = {group_id, vt_id}; struct maat_hierarchy_compile *compile = NULL; int ret = 0; pthread_rwlock_wrlock(&hier->rwlock); hier->changed_flag = 1; HASH_FIND(hh, hier->hash_compile_by_id, &compile_id, sizeof(compile_id), compile); if (!compile) { log_error(hier->logger, MODULE_HIERARCHY, "Remove group %d from compile %d failed, compile is not exisited.", group_id, compile_id); goto error_out; } ret = maat_hierarchy_compile_remove_literal(compile, &literal_id, clause_index); if (ret < 0) { log_error(hier->logger, MODULE_HIERARCHY, "Remove group %d vt_id %d from clause %d of compile %d failed, literal is not in compile.", group_id, vt_id, clause_index, compile_id); goto error_out; } if (0 == compile->actual_clause_num && !compile->user_data) { HASH_DEL(hier->hash_compile_by_id, compile); maat_garbage_bagging(hier->ref_garbage_bin, compile, (void (*)(void*))maat_hierarchy_compile_free); } pthread_rwlock_unlock(&hier->rwlock); return 0; error_out: pthread_rwlock_unlock(&hier->rwlock); return -1; } int maat_hierarchy_add_item_to_group(struct maat_hierarchy *hier, int group_id, int item_id, void *user_data) { //A item rule belongs to ONE group only. struct maat_group *group = NULL; struct maat_hierarchy_item *item = NULL; int ret = 0; pthread_rwlock_wrlock(&hier->rwlock); hier->changed_flag = 1; /* HASH_FIND(hh_group_id, hier->hash_group_by_id, &group_id, sizeof(group_id), group); if (!group) { group = maat_hierarchy_group_new(hier, group_id); }*/ HASH_FIND_INT(hier->hash_item_by_id, &item_id, item); if (item) { log_error(hier->logger, MODULE_HIERARCHY, "Add item %d to group %d failed, item already in group %d.", item_id, group_id, item->ref_parent_group->group_id); ret = -1; } else { item = maat_hierarchy_item_new(hier, item_id, group_id, group, user_data); ret = 0; } pthread_rwlock_unlock(&hier->rwlock); return ret; } int maat_hierarchy_remove_item_from_group(struct maat_hierarchy *hier, int group_id, int item_id) { struct maat_group *group = NULL; struct maat_hierarchy_item *item = NULL; pthread_rwlock_wrlock(&hier->rwlock); hier->changed_flag = 1; HASH_FIND(hh_group_id, hier->ref_group_topo->hash_group_by_id, &group_id, sizeof(group_id), group); if (!group) { log_error(hier->logger, MODULE_HIERARCHY, "Remove item %d from group %d failed, group is not existed.", item_id, group_id); goto error_out; } HASH_FIND_INT(hier->hash_item_by_id, &item_id, item); if (!item) { log_error(hier->logger, MODULE_HIERARCHY, "Remove item %d from group %d failed, item is not exisited.", item_id, group_id); goto error_out; } assert(item->group_id == group->group_id); maat_hierarchy_item_free(hier, item); pthread_rwlock_unlock(&hier->rwlock); return 0; error_out: pthread_rwlock_unlock(&hier->rwlock); return -1; }