/* ********************************************************************************************** * File: maat_group.cpp * Description: * Authors: Liu wentan * Date: 2022-10-31 * Copyright: (c) 2018-2022 Geedge Networks, Inc. All rights reserved. *********************************************************************************************** */ #include #include #include "maat_group.h" #include "utils.h" #include "maat_utils.h" #include "uthash/uthash.h" #include "igraph/igraph.h" #include "log/log.h" #define MODULE_GROUP module_name_str("maat.group") struct maat_group_topology { struct maat_group *hash_group_by_id; //key: group_id, value: struct maat_group *. struct maat_group *hash_group_by_vertex; //key: vetex_id, value: struct maat_group *. Multimap (Items with multiple keys). igraph_t group_graph; igraph_integer_t group_graph_vcount; igraph_vector_t dfs_vids; igraph_integer_t grp_vertex_id_generator; pthread_rwlock_t rwlock; struct log_handle *logger; }; void group_vertex_free(struct maat_group *group) { free(group->top_group_ids); free(group); } struct maat_group_topology *maat_group_topology_new(struct log_handle *logger) { struct maat_group_topology *group_topo = ALLOC(struct maat_group_topology, 1); UNUSED int ret = 0; group_topo->hash_group_by_id = NULL; group_topo->hash_group_by_vertex = NULL; ret = igraph_empty(&group_topo->group_graph, 0, IGRAPH_DIRECTED); assert(ret == IGRAPH_SUCCESS); ret = pthread_rwlock_init(&group_topo->rwlock, NULL); assert(ret == 0); group_topo->logger = logger; return group_topo; } void maat_group_topology_free(struct maat_group_topology *group_topo) { struct maat_group *group = NULL, *tmp_group = NULL; HASH_CLEAR(hh_vertex_id, group_topo->hash_group_by_vertex);//No need group memory clean up. HASH_ITER(hh_group_id, group_topo->hash_group_by_id, group, tmp_group) { HASH_DELETE(hh_group_id, group_topo->hash_group_by_id, group); group_vertex_free(group); } assert(group_topo->hash_group_by_id == NULL); igraph_destroy(&group_topo->group_graph); pthread_rwlock_unlock(&group_topo->rwlock); pthread_rwlock_destroy(&group_topo->rwlock); } size_t print_igraph_vector(igraph_vector_t *v, char *buff, size_t sz) { long int i; int printed = 0; for (i = 0; i < igraph_vector_size(v); i++) { printed += snprintf(buff + printed, sz - printed, " %li", (long int) VECTOR(*v)[i]); } return printed; } struct maat_group *maat_group_topology_add_group(struct maat_group_topology *group_topo, int group_id) { struct maat_group *group = ALLOC(struct maat_group, 1); group->group_id = group_id; group->vertex_id = group_topo->grp_vertex_id_generator++; assert(igraph_vcount(&group_topo->group_graph)==group->vertex_id); igraph_add_vertices(&group_topo->group_graph, 1, NULL); //Add 1 vertice. HASH_ADD(hh_group_id, group_topo->hash_group_by_id, group_id, sizeof(group->group_id), group); HASH_ADD(hh_vertex_id, group_topo->hash_group_by_vertex, vertex_id, sizeof(group->vertex_id), group); return group; } void maat_group_topology_remove_group(struct maat_group_topology *group_topo, struct maat_group *group) { igraph_vector_t v; char buff[4096] = {0}; assert(group->ref_by_compile_cnt == 0 && group->ref_by_superior_group_cnt == 0); igraph_vector_init(&v, 8); igraph_neighbors(&group_topo->group_graph, &v, group->vertex_id, IGRAPH_ALL); if (igraph_vector_size(&v) > 0) { print_igraph_vector(&v, buff, sizeof(buff)); log_error(group_topo->logger, MODULE_GROUP, "Del group %d exception, still reached by %s.", group->vertex_id, buff); assert(0); } igraph_vector_destroy(&v); assert(group->top_group_ids==NULL); //We should not call igraph_delete_vertices, because this is function changes the ids of the vertices. //igraph_delete_vertices(&hier->group_graph, igraph_vss_1(group->vertex_id)); HASH_DELETE(hh_group_id, group_topo->hash_group_by_id, group); HASH_DELETE(hh_vertex_id, group_topo->hash_group_by_vertex, group); group_vertex_free(group); } struct maat_group *maat_group_topology_find_group(struct maat_group_topology *group_topo, int group_id) { struct maat_group *group = NULL; HASH_FIND(hh_group_id, group_topo->hash_group_by_id, &group_id, sizeof(group_id), group); return group; } int maat_group_topology_add_group_to_group(struct maat_group_topology *group_topo, int group_id, int superior_group_id) { int ret = 0; igraph_integer_t edge_id; struct maat_group *group = NULL, *superior_group = NULL; group = maat_group_topology_find_group(group_topo, group_id); if (NULL == group) { group = maat_group_topology_add_group(group_topo, group_id); } superior_group = maat_group_topology_find_group(group_topo, superior_group_id); if (NULL == superior_group) { superior_group = maat_group_topology_add_group(group_topo, superior_group_id); } ret = igraph_get_eid(&group_topo->group_graph, &edge_id, group->vertex_id, superior_group->vertex_id, IGRAPH_DIRECTED, /*error*/ 0); //No duplicated edges between two groups. if (edge_id > 0) { log_error(group_topo->logger, MODULE_GROUP, "Add group %d to group %d failed, relation already exisited.", group->group_id, superior_group->group_id); ret = -1; } else { igraph_add_edge(&group_topo->group_graph, group->vertex_id, superior_group->vertex_id); group->ref_by_superior_group_cnt++; superior_group->ref_by_subordinate_group_cnt++; ret = 0; } return ret; } int maat_group_topology_remove_group_from_group(struct maat_group_topology *group_topo, int group_id, int superior_group_id) { int ret = 0; struct maat_group *group = NULL, *superior_group = NULL; //No hash write operation, LOCK protection is unnecessary. group = maat_group_topology_find_group(group_topo, group_id); if (NULL == group) { log_error(group_topo->logger, MODULE_GROUP, "Del group %d from group %d failed, group %d not exisited.", group_id, superior_group_id, group_id); return -1; } superior_group = maat_group_topology_find_group(group_topo, superior_group_id); if (NULL == superior_group) { log_error(group_topo->logger, MODULE_GROUP, "Del group %d from group %d failed, superior group %d not exisited.", group_id, superior_group_id, superior_group_id); return -1; } igraph_es_t es; igraph_integer_t edge_num_before = 0, edge_num_after = 0; edge_num_before = igraph_ecount(&group_topo->group_graph); // The edges between the given pairs of vertices will be included in the edge selection. //The vertex pairs must be given as the arguments of the function call, the third argument //is the first vertex of the first edge, the fourth argument is the second vertex of the //first edge, the fifth is the first vertex of the second edge and so on. The last element //of the argument list must be -1 to denote the end of the argument list. //https://igraph.org/c/doc/igraph-Iterators.html#igraph_es_pairs_small ret = igraph_es_pairs_small(&es, IGRAPH_DIRECTED, group->vertex_id, superior_group->vertex_id, -1); assert(ret==IGRAPH_SUCCESS); // ignore no such edge to abort(). igraph_set_error_handler(igraph_error_handler_ignore); ret = igraph_delete_edges(&group_topo->group_graph, es); edge_num_after = igraph_ecount(&group_topo->group_graph); igraph_es_destroy(&es); if (ret != IGRAPH_SUCCESS || edge_num_before - edge_num_after != 1) { assert(0); return -1; } group->ref_by_superior_group_cnt--; superior_group->ref_by_subordinate_group_cnt--; return 0; } static size_t effective_vertices_count(igraph_vector_t *vids) { size_t i = 0; int tmp_vid = 0; for (i = 0; i < (size_t)igraph_vector_size(vids); i++) { tmp_vid = (int) VECTOR(*vids)[i]; if (tmp_vid < 0) { break; } } return i; } int maat_group_topology_build_top_groups(struct maat_group_topology *group_topo) { struct maat_group *group = NULL, *tmp = NULL; struct maat_group *superior_group = NULL; int tmp_vid=0; size_t i=0, top_group_cnt=0; int* temp_group_ids=NULL; igraph_bool_t is_dag; igraph_is_dag(&(group_topo->group_graph), &is_dag); if (!is_dag) { log_error(group_topo->logger, MODULE_GROUP, "Sub group cycle detected!"); return -1; } group_topo->group_graph_vcount = igraph_vcount(&group_topo->group_graph); igraph_vector_init(&(group_topo->dfs_vids), group_topo->group_graph_vcount); HASH_ITER (hh_group_id, group_topo->hash_group_by_id, group, tmp) { top_group_cnt = 0; temp_group_ids = NULL; //Orphan, Not reference by any one, free it. if (0 == group->ref_by_compile_cnt && 0 == group->ref_by_superior_group_cnt && 0 == group->ref_by_subordinate_group_cnt && 0 == group->ref_by_item_cnt) { FREE(group->top_group_ids); maat_group_topology_remove_group(group_topo, group); continue; } //A group is need to build top groups when it has items and referenced by superior groups or compiles. if (group->ref_by_item_cnt > 0 && (group->ref_by_compile_cnt > 0 || group->ref_by_superior_group_cnt > 0)) { if (0 == group->ref_by_superior_group_cnt) { //fast path, group is only referenced by compile rules. top_group_cnt = 1; temp_group_ids = ALLOC(int, top_group_cnt); temp_group_ids[0] = group->group_id; } else { igraph_vector_t *vids = &(group_topo->dfs_vids); igraph_dfs(&group_topo->group_graph, group->vertex_id, IGRAPH_OUT, 0, vids, NULL, NULL, NULL, NULL, NULL, NULL); temp_group_ids = ALLOC(int, effective_vertices_count(vids)); for (size_t i = 0; i < (size_t)igraph_vector_size(vids); i++) { tmp_vid = (int) VECTOR(*vids)[i]; if (tmp_vid < 0) { break; } HASH_FIND(hh_vertex_id, group_topo->hash_group_by_vertex, &tmp_vid, sizeof(tmp_vid), superior_group); //including itself if (superior_group->ref_by_compile_cnt > 0) { temp_group_ids[top_group_cnt] = superior_group->group_id; top_group_cnt++; } } } } free(group->top_group_ids); group->top_group_cnt = top_group_cnt; group->top_group_ids = ALLOC(int, group->top_group_cnt); memcpy(group->top_group_ids, temp_group_ids, sizeof(int)*group->top_group_cnt); FREE(temp_group_ids); } igraph_vector_destroy(&group_topo->dfs_vids); return 0; }