This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
stellar-stellar/infra/ip_reassembly/ip_reassembly.c

768 lines
25 KiB
C

#include <assert.h>
#include "uthash.h"
#include "checksum.h"
#include "ip_reassembly.h"
#include "packet_parser.h"
#include "packet_helper.h"
#include "packet_internal.h"
#define IP_REASSEMBLY_LOG_ERROR(format, ...) STELLAR_LOG_ERROR(__thread_local_logger, "IP reassembly", format, ##__VA_ARGS__)
#define IP_REASSEMBLY_LOG_INFO(format, ...) STELLAR_LOG_INFO(__thread_local_logger, "IP reassembly", format, ##__VA_ARGS__)
/*
* https://datatracker.ietf.org/doc/html/rfc8200#section-4.5
*
* Note: unlike IPv4, fragmentation in IPv6 is performed only by source nodes,
* not by routers along a packet's delivery path -- see Section 5.
*/
/*
* original packet:
* +-----------------+-----------------+--------+--------+-//-+--------+
* | Per-Fragment |Ext & Upper-Layer| first | second | | last |
* | Headers | Headers |fragment|fragment|....|fragment|
* +-----------------+-----------------+--------+--------+-//-+--------+
*
* fragment packets:
* +-----------------+--------+-------------------+----------+
* | Per-Fragment |Fragment| Ext & Upper-Layer | first |
* | Headers | Header | Headers | fragment |
* +-----------------+--------+-------------------+----------+
*
* +-----------------+--------+----------+
* | Per-Fragment |Fragment| second |
* | Headers | Header | fragment |
* +-----------------+--------+----------+
* o
* o
* o
* +-----------------+--------+----------+
* | Per-Fragment |Fragment| last |
* | Headers | Header | fragment |
* +-----------------+--------+----------+
*
* reassembled packet:
* +-----------------+-----------------+--------+--------+-//-+--------+
* | Per-Fragment |Ext & Upper-Layer| first | second | | last |
* | Headers | Headers |fragment|fragment|....|fragment|
* +-----------------+-----------------+--------+--------+-//-+--------+
*/
#define IP_FIRST_FRAG_IDX 0
#define IP_LAST_FRAG_IDX 1
#define IP_MIN_FRAG_NUM 2
struct frag_key
{
uint8_t ip_version;
union
{
struct in_addr v4; // network order
struct in6_addr v6; // network order
} saddr, daddr;
uint32_t ip_id; // IPv4 identification is uint16_t; IPv6 identification is uint32_t
uint8_t next_proto; // IPv4 every fragment has next protocol; IPv6 only first fragment has next protocol
};
struct frag_encap
{
const void *data;
uint16_t len; // Eth header len + tunnel header len + IP header len
uint16_t l3_offset; // Eth header len + tunnel header len
uint16_t l3_len; // IP header len
uint8_t next_proto;
};
struct frag
{
const void *data; // IP payload data
uint16_t len; // IP payload length
uint16_t offset; // IP frag offset
bool more; // IP frag more
struct packet *pkt;
};
struct frag_queue
{
uint64_t start_time;
uint32_t expect_size;
uint32_t recved_size;
uint32_t next_fill;
uint32_t frag_used;
struct frag_key key;
struct frag_encap encap;
UT_hash_handle hh;
TAILQ_ENTRY(frag_queue)
tqe;
struct frag frags[];
};
TAILQ_HEAD(frag_queue_list, frag_queue);
struct ip_reassembly
{
uint64_t timeout_ms;
uint64_t fq_num;
uint64_t fq_size;
struct frag_queue *htable;
struct frag_queue_list free_list;
struct frag_queue_list lru_list;
struct packet_queue evict_pkt;
struct ip_reassembly_stat stat;
};
#define STAT_INC(stat, filed, key) \
{ \
if ((key)->ip_version == 4) \
(stat)->ip4_##filed++; \
else \
(stat)->ip6_##filed++; \
}
#define STAT_ADD(stat, filed, key, n) \
{ \
if ((key)->ip_version == 4) \
(stat)->ip4_##filed += n; \
else \
(stat)->ip6_##filed += n; \
}
#define IP_DEFRAG_ERROR_WITH_KEY(desc, key, ...) \
do \
{ \
char saddr_str[INET6_ADDRSTRLEN] = {0}; \
char daddr_str[INET6_ADDRSTRLEN] = {0}; \
if ((key)->ip_version == 4) \
{ \
inet_ntop(AF_INET, &(key)->saddr.v4, saddr_str, INET6_ADDRSTRLEN); \
inet_ntop(AF_INET, &(key)->daddr.v4, daddr_str, INET6_ADDRSTRLEN); \
} \
else \
{ \
inet_ntop(AF_INET6, &(key)->saddr.v6, saddr_str, INET6_ADDRSTRLEN); \
inet_ntop(AF_INET6, &(key)->daddr.v6, daddr_str, INET6_ADDRSTRLEN); \
} \
IP_REASSEMBLY_LOG_ERROR("%s (%s-%s 0x%0x)", (desc), saddr_str, daddr_str, (key)->ip_id); \
} while (0)
static int frag_key_init(struct frag_key *key, const struct packet *pkt)
{
memset(key, 0, sizeof(struct frag_key));
const struct layer_internal *layer = pkt->frag_layer;
if (layer->proto == LAYER_PROTO_IPV4)
{
const struct ip *hdr = (const struct ip *)layer->hdr_ptr;
key->ip_version = 4;
key->saddr.v4 = ip4_hdr_get_src_in_addr(hdr);
key->daddr.v4 = ip4_hdr_get_dst_in_addr(hdr);
key->ip_id = ip4_hdr_get_ipid(hdr);
key->next_proto = ip4_hdr_get_proto(hdr);
}
else
{
const struct ip6_hdr *hdr = (const struct ip6_hdr *)layer->hdr_ptr;
const struct ip6_frag *frag = ip6_hdr_get_frag_ext(hdr);
if (frag == NULL)
{
return -1;
}
key->ip_version = 6;
key->saddr.v6 = ip6_hdr_get_src_in6_addr(hdr);
key->daddr.v6 = ip6_hdr_get_dst_in6_addr(hdr);
key->ip_id = ipv6_frag_get_ident(frag);
key->next_proto = 0; // only first fragment has the upper layer protocol
}
return 0;
}
static void frag_encap_init(struct frag_encap *encap, const struct packet *pkt)
{
struct layer_internal *layer = pkt->frag_layer;
encap->data = (void *)pkt->data_ptr;
encap->len = layer->hdr_offset + layer->hdr_len;
encap->l3_offset = layer->hdr_offset;
encap->l3_len = layer->hdr_len;
if (layer->proto == LAYER_PROTO_IPV6)
{
const struct ip6_hdr *hdr = (const struct ip6_hdr *)layer->hdr_ptr;
const struct ip6_frag *frag = ip6_hdr_get_frag_ext(hdr);
encap->next_proto = ipv6_frag_get_next_header(frag);
}
else
{
const struct ip *hdr = (const struct ip *)layer->hdr_ptr;
encap->next_proto = ip4_hdr_get_proto(hdr);
}
}
static void frag_encap_clean(struct frag_encap *encap)
{
encap->data = NULL;
encap->len = 0;
encap->l3_offset = 0;
encap->l3_len = 0;
encap->next_proto = 0;
}
static int frag_init(struct frag *frag, struct packet *pkt)
{
const struct layer_internal *layer = pkt->frag_layer;
if (layer->proto == LAYER_PROTO_IPV4)
{
const struct ip *hdr = (const struct ip *)layer->hdr_ptr;
frag->data = layer->pld_ptr;
frag->len = layer->pld_len;
if ((char *)frag->data + frag->len > pkt->data_ptr + pkt->data_len)
{
return -1;
}
frag->offset = ip4_hdr_get_frag_offset(hdr);
frag->more = ip4_hdr_get_mf_flag(hdr);
frag->pkt = pkt;
return 0;
}
else
{
const struct ip6_hdr *hdr = (const struct ip6_hdr *)layer->hdr_ptr;
const struct ip6_frag *frag_hdr = ip6_hdr_get_frag_ext(hdr);
if (frag_hdr == NULL)
{
return -1;
}
frag->data = (char *)frag_hdr + sizeof(struct ip6_frag);
frag->len = ip6_hdr_get_payload_len(hdr) - sizeof(struct ip6_frag);
if ((char *)frag->data + frag->len > pkt->data_ptr + pkt->data_len)
{
return -1;
}
frag->offset = ipv6_frag_get_offset(frag_hdr);
frag->more = ipv6_frag_get_more(frag_hdr);
frag->pkt = pkt;
return 0;
}
}
static void frag_clean(struct frag *frag)
{
frag->data = NULL;
frag->len = 0;
frag->offset = 0;
frag->more = false;
frag->pkt = NULL;
}
static struct frag_queue *ip_reassembly_new_fq(struct ip_reassembly *ip_reass)
{
struct frag_queue *fq = TAILQ_FIRST(&ip_reass->free_list);
if (fq)
{
TAILQ_REMOVE(&ip_reass->free_list, fq, tqe);
return fq;
}
else
{
return NULL;
}
}
static void ip_reassembly_free_fq(struct ip_reassembly *ip_reass, struct frag_queue *fq)
{
if (fq)
{
TAILQ_INSERT_TAIL(&ip_reass->free_list, fq, tqe);
}
}
static void ip_reassembly_add_fq(struct ip_reassembly *ip_reass, struct frag_queue *fq, const struct frag_key *key, uint64_t now)
{
static const struct frag zero = {
.data = NULL,
.len = 0,
.offset = 0,
.more = false,
.pkt = NULL,
};
fq->start_time = now;
fq->expect_size = UINT32_MAX;
fq->recved_size = 0;
fq->next_fill = IP_MIN_FRAG_NUM;
fq->frag_used = 0;
fq->key = *key;
fq->frags[IP_LAST_FRAG_IDX] = zero;
fq->frags[IP_FIRST_FRAG_IDX] = zero;
HASH_ADD(hh, ip_reass->htable, key, sizeof(struct frag_key), fq);
TAILQ_INSERT_TAIL(&ip_reass->lru_list, fq, tqe);
STAT_INC(&ip_reass->stat, defrags_expected, key)
}
static void ip_reassembly_del_fq(struct ip_reassembly *ip_reass, struct frag_queue *fq)
{
if (fq)
{
HASH_DELETE(hh, ip_reass->htable, fq);
TAILQ_REMOVE(&ip_reass->lru_list, fq, tqe);
frag_encap_clean(&fq->encap);
for (uint32_t i = 0; i < fq->next_fill; i++)
{
struct frag *frag = &fq->frags[i];
if (frag->pkt)
{
TAILQ_INSERT_TAIL(&ip_reass->evict_pkt, frag->pkt, frag_tqe);
}
frag_clean(frag);
}
STAT_ADD(&ip_reass->stat, frags_freed, &fq->key, fq->frag_used);
}
}
static struct frag_queue *ip_reassembly_find_fq(struct ip_reassembly *ip_reass, struct frag_key *key)
{
struct frag_queue *fq = NULL;
HASH_FIND(hh, ip_reass->htable, key, sizeof(struct frag_key), fq);
return fq;
}
static int ip_reassembly_update_fq(struct ip_reassembly *ip_reass, struct frag_queue *fq, struct frag *frag)
{
uint32_t idx;
/*
* Internet Protocol, Version 6 (IPv6) Specification
*
* https://datatracker.ietf.org/doc/html/rfc8200#section-4.5
*
* It should be noted that fragments may be duplicated in the
* network. Instead of treating these exact duplicate fragments
* as overlapping fragments, an implementation may choose to
* detect this case and drop exact duplicate fragments while
* keeping the other fragments belonging to the same packet.
*/
if (frag->offset == 0)
{
if (fq->frags[IP_FIRST_FRAG_IDX].data != NULL)
{
IP_DEFRAG_ERROR_WITH_KEY("duplicate first fragment", &fq->key);
STAT_INC(&ip_reass->stat, frags_overlap, &fq->key)
goto error_out;
}
idx = IP_FIRST_FRAG_IDX;
frag_encap_init(&fq->encap, frag->pkt);
}
else if (frag->more == 0)
{
if (fq->frags[IP_LAST_FRAG_IDX].data != NULL)
{
IP_DEFRAG_ERROR_WITH_KEY("duplicate last fragment", &fq->key);
STAT_INC(&ip_reass->stat, frags_overlap, &fq->key)
goto error_out;
}
idx = IP_LAST_FRAG_IDX;
fq->expect_size = frag->offset + frag->len;
}
else
{
if (fq->next_fill >= ip_reass->fq_size)
{
IP_DEFRAG_ERROR_WITH_KEY("max number of fragment exceeded", &fq->key);
STAT_INC(&ip_reass->stat, frags_too_many, &fq->key)
goto error_out;
}
idx = fq->next_fill;
fq->next_fill++;
}
fq->frag_used++;
fq->recved_size += frag->len;
TAILQ_REMOVE(&ip_reass->lru_list, fq, tqe);
TAILQ_INSERT_TAIL(&ip_reass->lru_list, fq, tqe);
memcpy(&fq->frags[idx], frag, sizeof(struct frag));
STAT_INC(&ip_reass->stat, frags_buffered, &fq->key)
return 0;
error_out:
STAT_INC(&ip_reass->stat, defrags_failed, &fq->key)
ip_reassembly_del_fq(ip_reass, fq);
ip_reassembly_free_fq(ip_reass, fq);
TAILQ_INSERT_TAIL(&ip_reass->evict_pkt, frag->pkt, frag_tqe);
return -1;
}
static struct packet *ip_reassembly_defrag_fq(struct ip_reassembly *ip_reass, struct frag_queue *fq)
{
struct frag *frag = NULL;
struct frag *first = &fq->frags[IP_FIRST_FRAG_IDX];
struct frag *last = &fq->frags[IP_LAST_FRAG_IDX];
uint32_t loop = 0;
uint16_t last_offset = last->offset;
struct ip *ip4_hdr = NULL;
struct ip6_hdr *ip6_hdr = NULL;
// calculate the length of the reassembled packet
uint32_t total_len = fq->expect_size + fq->encap.len;
struct packet *pkt = packet_new(total_len);
if (pkt == NULL)
{
IP_REASSEMBLY_LOG_ERROR("unable to allocate memory");
// TODO stat
goto error_out;
}
char *ptr = (char *)packet_get_raw_data(pkt);
char *end = ptr + packet_get_raw_len(pkt);
// copy last frag
if (last->len > end - ptr)
{
IP_DEFRAG_ERROR_WITH_KEY("last frag length not match expected reassembled length", &fq->key);
STAT_INC(&ip_reass->stat, frags_invalid_length, &fq->key)
goto error_out;
}
end -= last->len;
memcpy(end, last->data, last->len);
while (first->len != last_offset)
{
/*
* https://datatracker.ietf.org/doc/html/rfc791
*
* In the case that two or more fragments contain the same data
* either identically or through a partial overlap, this procedure
* will use the more recently arrived copy in the data buffer and
* datagram delivered.
*/
for (uint32_t i = fq->next_fill - 1; i >= IP_MIN_FRAG_NUM; i--)
{
frag = &fq->frags[i];
if (frag->offset + frag->len == last_offset)
{
if (frag->len > end - ptr)
{
IP_DEFRAG_ERROR_WITH_KEY("middle frag length not match expected reassembled length", &fq->key);
STAT_INC(&ip_reass->stat, frags_invalid_length, &fq->key)
goto error_out;
}
end -= frag->len;
memcpy(end, frag->data, frag->len);
last_offset = frag->offset;
break;
}
}
if (loop > fq->next_fill - IP_MIN_FRAG_NUM)
{
IP_DEFRAG_ERROR_WITH_KEY("overlap appear during frag reassemble", &fq->key);
STAT_INC(&ip_reass->stat, frags_overlap, &fq->key)
goto error_out;
}
loop++;
}
// copy fist frag
if (first->len > end - ptr)
{
IP_DEFRAG_ERROR_WITH_KEY("first frag length not match expected reassembled length", &fq->key);
STAT_INC(&ip_reass->stat, frags_invalid_length, &fq->key)
goto error_out;
}
end -= first->len;
memcpy(end, first->data, first->len);
// copy frag hdr
if (fq->encap.len > end - ptr)
{
IP_DEFRAG_ERROR_WITH_KEY("packet header length not match expected reassembled length", &fq->key);
STAT_INC(&ip_reass->stat, frags_invalid_length, &fq->key)
goto error_out;
}
end -= fq->encap.len;
memcpy(end, fq->encap.data, fq->encap.len);
// assert
assert(ptr == end);
if (fq->key.ip_version == 4)
{
// update ip header length & ip checksum
ip4_hdr = (struct ip *)(ptr + fq->encap.l3_offset);
ip4_hdr_set_total_len(ip4_hdr, total_len - fq->encap.l3_offset); // update ip header length
ip4_hdr_set_mf_flag(ip4_hdr, false); // update more fragment flag
ip4_hdr_set_frag_offset(ip4_hdr, 0); // update fragment offset
ip4_hdr->ip_sum = 0; // update checksum
ip4_hdr->ip_sum = checksum((const void *)ip4_hdr, fq->encap.l3_len);
}
else
{
// update ipv6 payload length & next header
ip6_hdr = (struct ip6_hdr *)(ptr + fq->encap.l3_offset);
ip6_hdr_set_payload_len(ip6_hdr, fq->expect_size); // update payload length
ip6_hdr_set_next_header(ip6_hdr, fq->encap.next_proto); // update next header
}
// create a new packet
packet_parse(pkt, ptr, total_len);
packet_set_defraged(pkt);
memcpy(&pkt->meta, &first->pkt->meta, sizeof(struct metadata));
packet_push_frag(pkt, first->pkt);
first->pkt = NULL;
for (uint32_t i = IP_MIN_FRAG_NUM; i < fq->next_fill; i++)
{
frag = &fq->frags[i];
packet_push_frag(pkt, frag->pkt);
frag->pkt = NULL;
}
packet_push_frag(pkt, last->pkt);
last->pkt = NULL;
STAT_INC(&ip_reass->stat, defrags_succeed, &fq->key)
ip_reassembly_del_fq(ip_reass, fq);
ip_reassembly_free_fq(ip_reass, fq);
return pkt;
error_out:
STAT_INC(&ip_reass->stat, defrags_failed, &fq->key)
ip_reassembly_del_fq(ip_reass, fq);
ip_reassembly_free_fq(ip_reass, fq);
packet_free(pkt);
return NULL;
}
static int frag_queue_is_ready(struct frag_queue *fq)
{
return (fq->recved_size == fq->expect_size && fq->frags[IP_FIRST_FRAG_IDX].data != NULL);
}
/******************************************************************************
* core
******************************************************************************/
struct ip_reassembly *ip_reassembly_new(uint64_t timeout_ms, uint64_t fq_num, uint64_t fq_size)
{
struct ip_reassembly *ip_reass = (struct ip_reassembly *)calloc(1, sizeof(struct ip_reassembly));
if (ip_reass == NULL)
{
IP_REASSEMBLY_LOG_ERROR("unable to allocate memory for ip_reassembly");
return NULL;
}
ip_reass->timeout_ms = timeout_ms;
ip_reass->fq_num = fq_num;
ip_reass->fq_size = fq_size;
ip_reass->htable = NULL;
TAILQ_INIT(&ip_reass->free_list);
TAILQ_INIT(&ip_reass->lru_list);
TAILQ_INIT(&ip_reass->evict_pkt);
for (uint64_t i = 0; i < ip_reass->fq_num; i++)
{
struct frag_queue *fq = (struct frag_queue *)calloc(1, sizeof(struct frag_queue) + sizeof(struct frag) * ip_reass->fq_size);
if (fq == NULL)
{
IP_REASSEMBLY_LOG_ERROR("unable to allocate memory for frag_queue");
goto error_out;
}
TAILQ_INSERT_TAIL(&ip_reass->free_list, fq, tqe);
}
return ip_reass;
error_out:
ip_reassembly_free(ip_reass);
return NULL;
}
void ip_reassembly_free(struct ip_reassembly *ip_reass)
{
struct packet *pkt;
struct frag_queue *fq;
if (ip_reass)
{
while ((fq = TAILQ_FIRST(&ip_reass->lru_list)))
{
STAT_INC(&ip_reass->stat, defrags_failed, &fq->key)
ip_reassembly_del_fq(ip_reass, fq);
ip_reassembly_free_fq(ip_reass, fq);
}
while ((fq = TAILQ_FIRST(&ip_reass->free_list)))
{
TAILQ_REMOVE(&ip_reass->free_list, fq, tqe);
free(fq);
fq = NULL;
}
assert(HASH_COUNT(ip_reass->htable) == 0);
while ((pkt = TAILQ_FIRST(&ip_reass->evict_pkt)))
{
TAILQ_REMOVE(&ip_reass->evict_pkt, pkt, frag_tqe);
packet_free(pkt);
}
free(ip_reass);
ip_reass = NULL;
}
}
struct packet *ip_reassembly_defrag(struct ip_reassembly *ip_reass, struct packet *pkt, uint64_t now)
{
struct frag_key key;
if (frag_key_init(&key, pkt) != 0)
{
IP_REASSEMBLY_LOG_ERROR("unable to init frag key");
TAILQ_INSERT_TAIL(&ip_reass->evict_pkt, pkt, frag_tqe);
return NULL;
}
struct frag frag;
if (frag_init(&frag, pkt) != 0)
{
IP_REASSEMBLY_LOG_ERROR("unable to init frag");
TAILQ_INSERT_TAIL(&ip_reass->evict_pkt, pkt, frag_tqe);
return NULL;
}
STAT_INC(&ip_reass->stat, frags, &key)
struct frag_queue *fq = ip_reassembly_find_fq(ip_reass, &key);
if (fq == NULL)
{
fq = ip_reassembly_new_fq(ip_reass);
if (fq == NULL)
{
TAILQ_INSERT_TAIL(&ip_reass->evict_pkt, pkt, frag_tqe);
STAT_INC(&ip_reass->stat, frags_no_buffer, &key)
return NULL;
}
ip_reassembly_add_fq(ip_reass, fq, &key, now);
}
if (ip_reassembly_update_fq(ip_reass, fq, &frag) != 0)
{
return NULL;
}
if (frag_queue_is_ready(fq))
{
return ip_reassembly_defrag_fq(ip_reass, fq);
}
else
{
return NULL;
}
}
struct packet *ip_reassembly_clean(struct ip_reassembly *ip_reass, uint64_t now_ms)
{
struct frag_queue *fq;
while ((fq = TAILQ_FIRST(&ip_reass->lru_list)))
{
if (fq->start_time + ip_reass->timeout_ms > now_ms)
{
break;
}
STAT_INC(&ip_reass->stat, defrags_failed, &fq->key)
STAT_ADD(&ip_reass->stat, frags_timeout, &fq->key, fq->frag_used)
ip_reassembly_del_fq(ip_reass, fq);
ip_reassembly_free_fq(ip_reass, fq);
}
struct packet *pkt = TAILQ_FIRST(&ip_reass->evict_pkt);
if (pkt)
{
TAILQ_REMOVE(&ip_reass->evict_pkt, pkt, frag_tqe);
return pkt;
}
else
{
return NULL;
}
}
struct ip_reassembly_stat *ip_reassembly_get_stat(struct ip_reassembly *ip_reass)
{
if (ip_reass)
{
return &(ip_reass->stat);
}
else
{
return NULL;
}
}
void ip_reassembly_print_stat(struct ip_reassembly *ip_reass)
{
if (ip_reass)
{
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip4_defrags_expected : %lu", ip_reass, ip_reass->stat.ip4_defrags_expected);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip4_defrags_succeed : %lu", ip_reass, ip_reass->stat.ip4_defrags_succeed);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip4_defrags_failed : %lu", ip_reass, ip_reass->stat.ip4_defrags_failed);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip4_frags : %lu", ip_reass, ip_reass->stat.ip4_frags);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip4_frags_freed : %lu", ip_reass, ip_reass->stat.ip4_frags_freed);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip4_frags_buffered : %lu", ip_reass, ip_reass->stat.ip4_frags_buffered);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip4_frags_no_buffer : %lu", ip_reass, ip_reass->stat.ip4_frags_no_buffer);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip4_frags_timeout : %lu", ip_reass, ip_reass->stat.ip4_frags_timeout);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip4_frags_invalid_length : %lu", ip_reass, ip_reass->stat.ip4_frags_invalid_length);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip4_frags_overlap : %lu", ip_reass, ip_reass->stat.ip4_frags_overlap);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip4_frags_too_many : %lu", ip_reass, ip_reass->stat.ip4_frags_too_many);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip6_defrags_expected : %lu", ip_reass, ip_reass->stat.ip6_defrags_expected);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip6_defrags_succeed : %lu", ip_reass, ip_reass->stat.ip6_defrags_succeed);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip6_defrags_failed : %lu", ip_reass, ip_reass->stat.ip6_defrags_failed);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip6_frags : %lu", ip_reass, ip_reass->stat.ip6_frags);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip6_frags_freed : %lu", ip_reass, ip_reass->stat.ip6_frags_freed);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip6_frags_buffered : %lu", ip_reass, ip_reass->stat.ip6_frags_buffered);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip6_frags_no_buffer : %lu", ip_reass, ip_reass->stat.ip6_frags_no_buffer);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip6_frags_timeout : %lu", ip_reass, ip_reass->stat.ip6_frags_timeout);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip6_frags_invalid_length : %lu", ip_reass, ip_reass->stat.ip6_frags_invalid_length);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip6_frags_overlap : %lu", ip_reass, ip_reass->stat.ip6_frags_overlap);
IP_REASSEMBLY_LOG_INFO("ip_reass: %p, ip6_frags_too_many : %lu", ip_reass, ip_reass->stat.ip6_frags_too_many);
}
}
uint64_t ip_reassembly_stat_get(struct ip_reassembly_stat *stat, enum ip_reass_stat_type type)
{
switch (type)
{
#define XX(_type, _name) \
case _type: \
return stat->_name;
IP_REASS_STAT_MAP(XX)
#undef XX
default:
return 0;
}
}