This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
stellar-stellar/src/packet/packet.cpp

1475 lines
42 KiB
C++
Raw Normal View History

2023-12-15 18:57:13 +08:00
#include <string.h>
#include <stdlib.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#define __FAVOR_BSD 1
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet/ether.h>
#include <linux/ppp_defs.h>
#include "uthash.h"
#include "packet.h"
#define likely(expr) __builtin_expect((expr), 1)
#define unlikely(expr) __builtin_expect((expr), 0)
#define LOG_PACKET "PACKET"
#define PACKET_LOG_DATA_INSUFFICIENCY(type) \
{ \
PACKET_LOG_ERROR("%s: layer: %s, data insufficiency", \
LOG_PACKET, layer_type_tostring((type))); \
}
#define PACKET_LOG_UNSUPPORT_PROTO(tag, next_proto) \
{ \
PACKET_LOG_ERROR("%s: %s: unsupport next proto %d", \
LOG_PACKET, (tag), (next_proto)); \
}
#define PACKET_LOG_UNSUPPORT_ETHPROTO(tag, next_proto) \
{ \
PACKET_LOG_ERROR("%s: %s: unsupport next proto %d: %s", \
LOG_PACKET, (tag), (next_proto), ethproto_tostring(next_proto)); \
}
#define PACKET_LOG_UNSUPPORT_IPPROTO(tag, next_proto) \
{ \
PACKET_LOG_ERROR("%s: %s: unsupport next proto %d: %s", \
LOG_PACKET, (tag), (next_proto), ipproto_tostring(next_proto)); \
}
/******************************************************************************
* Static API
******************************************************************************/
static const char *ethproto_tostring(uint16_t proto);
static const char *ipproto_tostring(uint16_t proto);
static inline const char *ldbc_method_tostring(enum ldbc_method method);
static inline const char *layer_type_tostring(enum layer_type type);
static inline void set_tuple2(const char *data, enum layer_type type, struct tuple2 *tuple);
static inline void set_tuple4(const char *data, enum layer_type type, struct tuple4 *tuple);
static inline void set_tuple6(const char *data, enum layer_type type, struct tuple6 *tuple, uint64_t zone_id);
static inline struct layer_record *get_free_layer(struct packet *handler);
static inline uint16_t get_gtp_hdr_len(const char *data, uint16_t len);
static inline uint16_t get_gre_hdr_len(const char *data, uint16_t len);
// 数据链路层
static inline const char *parse_ether(struct packet *handler, const char *data, uint16_t len);
static inline const char *parse_ppp(struct packet *handler, const char *data, uint16_t len);
// 数据链路层 -- 隧道
static inline const char *parse_vlan(struct packet *handler, const char *data, uint16_t len);
static inline const char *parse_pppoe_ses(struct packet *handler, const char *data, uint16_t len);
static inline const char *parse_mpls(struct packet *handler, const char *data, uint16_t len);
// 网络层
static inline const char *parse_ipv4(struct packet *handler, const char *data, uint16_t len);
static inline const char *parse_ipv6(struct packet *handler, const char *data, uint16_t len);
// 网络层 -- 隧道
static inline const char *parse_gre(struct packet *handler, const char *data, uint16_t len);
// 传输层
static inline const char *parse_udp(struct packet *handler, const char *data, uint16_t len);
static inline const char *parse_tcp(struct packet *handler, const char *data, uint16_t len);
// 传输层 -- 隧道
static inline const char *parse_vxlan(struct packet *handler, const char *data, uint16_t len);
static inline const char *parse_gtpv1_u(struct packet *handler, const char *data, uint16_t len);
// L3/L4
static inline const char *parse_l3(struct packet *handler, uint16_t next_proto, const char *data, uint16_t len);
static inline const char *parse_l4(struct packet *handler, uint8_t next_proto, const char *data, uint16_t len);
/******************************************************************************
* Private API -- Utils
******************************************************************************/
static const char *ethproto_tostring(uint16_t proto)
{
switch (proto)
{
case ETH_P_LOOP:
return "LOOP";
case ETH_P_PUP:
return "PUP";
case ETH_P_PUPAT:
return "PUPAT";
case ETH_P_IP:
return "IP";
case ETH_P_X25:
return "X25";
case ETH_P_ARP:
return "ARP";
case ETH_P_BPQ:
return "BPQ";
case ETH_P_IEEEPUP:
return "IEEEPUP";
case ETH_P_IEEEPUPAT:
return "IEEEPUPAT";
case ETH_P_DEC:
return "DEC";
case ETH_P_DNA_DL:
return "DNA_DL";
case ETH_P_DNA_RC:
return "DNA_RC";
case ETH_P_DNA_RT:
return "DNA_RT";
case ETH_P_LAT:
return "LAT";
case ETH_P_DIAG:
return "DIAG";
case ETH_P_CUST:
return "CUST";
case ETH_P_SCA:
return "SCA";
case ETH_P_TEB:
return "TEB";
case ETH_P_RARP:
return "RARP";
case ETH_P_ATALK:
return "ATALK";
case ETH_P_AARP:
return "AARP";
case ETH_P_8021Q:
return "8021Q";
case ETH_P_IPX:
return "IPX";
case ETH_P_IPV6:
return "IPV6";
case ETH_P_PAUSE:
return "PAUSE";
case ETH_P_SLOW:
return "SLOW";
case ETH_P_WCCP:
return "WCCP";
case ETH_P_PPP_DISC:
return "PPP_DISC";
case ETH_P_PPP_SES:
return "PPP_SES";
case ETH_P_MPLS_UC:
return "MPLS_UC";
case ETH_P_MPLS_MC:
return "MPLS_MC";
case ETH_P_ATMMPOA:
return "ATMMPOA";
case ETH_P_LINK_CTL:
return "LINK_CTL";
case ETH_P_ATMFATE:
return "ATMFATE";
case ETH_P_PAE:
return "PAE";
case ETH_P_AOE:
return "AOE";
case ETH_P_8021AD:
return "8021AD";
case ETH_P_802_EX1:
return "802_EX1";
case ETH_P_TIPC:
return "TIPC";
case ETH_P_8021AH:
return "8021AH";
case ETH_P_1588:
return "1588";
case ETH_P_FCOE:
return "FCOE";
case ETH_P_TDLS:
return "TDLS";
case ETH_P_FIP:
return "FIP";
case ETH_P_QINQ1:
return "QINQ1";
case ETH_P_QINQ2:
return "QINQ2";
case ETH_P_QINQ3:
return "QINQ3";
case ETH_P_EDSA:
return "EDSA";
case ETH_P_AF_IUCV:
return "AF_IUCV";
default:
return "UNKNOWN";
}
}
static const char *ipproto_tostring(uint16_t proto)
{
switch (proto)
{
case IPPROTO_IP:
return "IP";
case IPPROTO_ICMP:
return "ICMP";
case IPPROTO_IGMP:
return "IGMP";
case IPPROTO_IPIP:
return "IPIP";
case IPPROTO_TCP:
return "TCP";
case IPPROTO_EGP:
return "EGP";
case IPPROTO_PUP:
return "PUP";
case IPPROTO_UDP:
return "UDP";
case IPPROTO_IDP:
return "IDP";
case IPPROTO_TP:
return "TP";
case IPPROTO_DCCP:
return "DCCP";
case IPPROTO_IPV6:
return "IPV6";
case IPPROTO_ROUTING:
return "ROUTING";
case IPPROTO_FRAGMENT:
return "FRAGMENT";
case IPPROTO_RSVP:
return "RSVP";
case IPPROTO_GRE:
return "GRE";
case IPPROTO_ESP:
return "ESP";
case IPPROTO_AH:
return "AH";
case IPPROTO_ICMPV6:
return "ICMPV6";
case IPPROTO_NONE:
return "NONE";
case IPPROTO_DSTOPTS:
return "DSTOPTS";
case IPPROTO_MTP:
return "MTP";
case IPPROTO_ENCAP:
return "ENCAP";
case IPPROTO_PIM:
return "PIM";
case IPPROTO_COMP:
return "COMP";
case IPPROTO_SCTP:
return "SCTP";
case IPPROTO_UDPLITE:
return "UDPLITE";
case IPPROTO_RAW:
return "RAW";
default:
return "UNKNOWN";
}
}
static inline const char *ldbc_method_tostring(enum ldbc_method method)
{
switch (method)
{
case LDBC_METHOD_HASH_INT_IP:
return "outter_internal_ip";
case LDBC_METHOD_HASH_EXT_IP:
return "outter_external_ip";
case LDBC_METHOD_HASH_INT_IP_AND_EXT_IP:
return "outter_internal_ip_and_external_ip";
case LDBC_METHOD_HASH_INNERMOST_INT_IP:
return "inner_internal_ip";
case LDBC_METHOD_HASH_INNERMOST_EXT_IP:
return "inner_external_ip";
default:
return "unknown";
}
}
static inline const char *layer_type_tostring(enum layer_type type)
{
switch (type)
{
case LAYER_TYPE_ETHER:
return "ETH";
case LAYER_TYPE_PPP:
return "PPP";
case LAYER_TYPE_HDLC:
return "HDLC";
case LAYER_TYPE_VLAN:
return "VLAN";
case LAYER_TYPE_PPPOE:
return "PPPOE";
case LAYER_TYPE_MPLS:
return "MPLS";
case LAYER_TYPE_IPV4:
return "IPV4";
case LAYER_TYPE_IPV6:
return "IPV6";
case LAYER_TYPE_GRE:
return "GRE";
case LAYER_TYPE_UDP:
return "UDP";
case LAYER_TYPE_TCP:
return "TCP";
case LAYER_TYPE_VXLAN:
return "VXLAN";
case LAYER_TYPE_GTPV1_U:
return "GTPV1";
default:
return "UNKNOWN";
}
}
static inline void set_tuple2(const char *data, enum layer_type type, struct tuple2 *tuple)
{
const struct ip *ipv4 = NULL;
const struct ip6_hdr *ipv6 = NULL;
switch (type)
{
case LAYER_TYPE_IPV4:
ipv4 = (const struct ip *)data;
tuple->ip_type = IP_TYPE_V4;
tuple->src_addr.v4.s_addr = ipv4->ip_src.s_addr;
tuple->dst_addr.v4.s_addr = ipv4->ip_dst.s_addr;
break;
case LAYER_TYPE_IPV6:
ipv6 = (const struct ip6_hdr *)data;
tuple->ip_type = IP_TYPE_V6;
tuple->src_addr.v6 = ipv6->ip6_src;
tuple->dst_addr.v6 = ipv6->ip6_dst;
break;
default:
break;
}
}
static inline void set_tuple4(const char *data, enum layer_type type, struct tuple4 *tuple)
{
const struct ip *ipv4 = NULL;
const struct ip6_hdr *ipv6 = NULL;
const struct tcphdr *tcp = NULL;
const struct udphdr *udp = NULL;
switch (type)
{
case LAYER_TYPE_TCP:
tcp = (const struct tcphdr *)data;
tuple->src_port = tcp->th_sport;
tuple->dst_port = tcp->th_dport;
break;
case LAYER_TYPE_UDP:
udp = (const struct udphdr *)data;
tuple->src_port = udp->uh_sport;
tuple->dst_port = udp->uh_dport;
break;
case LAYER_TYPE_IPV4:
ipv4 = (const struct ip *)data;
tuple->ip_type = IP_TYPE_V4;
tuple->src_addr.v4.s_addr = ipv4->ip_src.s_addr;
tuple->dst_addr.v4.s_addr = ipv4->ip_dst.s_addr;
break;
case LAYER_TYPE_IPV6:
ipv6 = (const struct ip6_hdr *)data;
tuple->ip_type = IP_TYPE_V6;
tuple->src_addr.v6 = ipv6->ip6_src;
tuple->dst_addr.v6 = ipv6->ip6_dst;
break;
default:
break;
}
}
static inline void set_tuple6(const char *data, enum layer_type type, struct tuple6 *tuple, uint64_t zone_id)
{
const struct ip *ipv4 = NULL;
const struct ip6_hdr *ipv6 = NULL;
const struct tcphdr *tcp = NULL;
const struct udphdr *udp = NULL;
tuple->security_zone = zone_id;
switch (type)
{
case LAYER_TYPE_TCP:
tcp = (const struct tcphdr *)data;
tuple->ip_proto = IPPROTO_TCP;
tuple->src_port = tcp->th_sport;
tuple->dst_port = tcp->th_dport;
break;
case LAYER_TYPE_UDP:
udp = (const struct udphdr *)data;
tuple->ip_proto = IPPROTO_UDP;
tuple->src_port = udp->uh_sport;
tuple->dst_port = udp->uh_dport;
break;
case LAYER_TYPE_IPV4:
ipv4 = (const struct ip *)data;
tuple->ip_type = IP_TYPE_V4;
tuple->src_addr.v4.s_addr = ipv4->ip_src.s_addr;
tuple->dst_addr.v4.s_addr = ipv4->ip_dst.s_addr;
break;
case LAYER_TYPE_IPV6:
ipv6 = (const struct ip6_hdr *)data;
tuple->ip_type = IP_TYPE_V6;
tuple->src_addr.v6 = ipv6->ip6_src;
tuple->dst_addr.v6 = ipv6->ip6_dst;
break;
default:
break;
}
}
static inline struct layer_record *get_free_layer(struct packet *handler)
{
if (handler->layers_used >= handler->layers_size)
{
return NULL;
}
return &handler->layers[handler->layers_used];
}
#define SET_LAYER(_handler, _layer, _type, _hdr_len, _data, _len) \
{ \
(_layer)->type = (_type); \
(_layer)->hdr_offset = (_handler)->data_len - (_len); \
(_layer)->hdr_ptr = (_data); \
(_layer)->hdr_len = (_hdr_len); \
(_layer)->pld_ptr = (_data) + (_hdr_len); \
(_layer)->pld_len = (_len) - (_hdr_len); \
(_handler)->layers_used++; \
}
/******************************************************************************
* Private API -- Parses
******************************************************************************/
static inline uint16_t get_gtp_hdr_len(const char *data, uint16_t len)
{
#define GTP_HDR_VER (0xE0)
#define GTP_HDR_FLAG_N_PDU (0x01)
#define GTP_HDR_FLAG_SEQ_NUM (0x02)
#define GTP_HDR_FLAG_EXT_HDR (0x04)
struct gtp_hdr
{
uint8_t flags;
uint8_t msg_type;
uint16_t msg_len;
uint32_t teid;
} __attribute__((__packed__));
struct gtp_opt
{
uint16_t seq_num;
uint8_t npdu;
uint8_t next_ext_hdr;
} __attribute__((__packed__));
uint16_t hdr_offset = 0;
if (len < sizeof(struct gtp_hdr))
{
return 0;
}
const struct gtp_hdr *gtp = (const struct gtp_hdr *)data;
hdr_offset += sizeof(struct gtp_hdr); // skip gre hdr
// GTPv0 Not Supported
if (((gtp->flags & GTP_HDR_VER) >> 5) != 1)
{
return 0;
}
if (gtp->flags & (GTP_HDR_FLAG_SEQ_NUM | GTP_HDR_FLAG_N_PDU | GTP_HDR_FLAG_EXT_HDR))
{
if (hdr_offset + sizeof(struct gtp_opt) > len)
{
return 0;
}
struct gtp_opt *opt_hdr = (struct gtp_opt *)((char *)data + hdr_offset);
uint8_t next_ext_hdr = opt_hdr->next_ext_hdr;
hdr_offset += sizeof(struct gtp_opt); // skip gre opt
while (next_ext_hdr)
{
if (hdr_offset + 1 > len)
{
return 0;
}
uint8_t length = *((char *)data + hdr_offset) * 4 - 2;
hdr_offset += 1; // skip length field
if (hdr_offset + length + 1 > len)
{
return 0;
}
hdr_offset += length; // skip data field
next_ext_hdr = *((char *)data + hdr_offset);
hdr_offset += 1; // skip next ext hdr field
}
}
return hdr_offset;
}
static inline uint16_t get_gre_hdr_len(const char *data, uint16_t len)
{
/*
* GRE Header Format (Version 0)
*
* 0 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |C|R|K|S|s|Recur| Flags | Ver | Protocol Type |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Checksum (optional) | Offset (optional) |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Key (optional) |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Sequence Number (optional) |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Routing (optional)
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 0 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Address Family | SRE Offset | SRE Length |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Routing Information ...
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* https://datatracker.ietf.org/doc/html/rfc1701
* https://datatracker.ietf.org/doc/html/rfc2890
*/
/*
* Enhanced GRE header (Version 1)
*
* 0 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |C|R|K|S|s|Recur|A| Flags | Ver | Protocol Type |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Key (HW) Payload Length | Key (LW) Call ID |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Sequence Number (Optional) |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Acknowledgment Number (Optional) |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* https://datatracker.ietf.org/doc/html/rfc2637
*/
/* bit positions for flags in header */
#define GRE_CHECKSUM 0x8000
#define GRE_ROUTING 0x4000
#define GRE_KEY 0x2000
#define GRE_SEQUENCE 0x1000
#define GRE_STRICTSOURCE 0x0800
#define GRE_RECURSION 0x0700
#define GRE_ACK 0x0080 /* only in special PPTPized GRE header */
#define GRE_RESERVED_PPP 0x0078 /* only in special PPTPized GRE header */
#define GRE_RESERVED 0x00F8
#define GRE_VERSION 0x0007
if (len < 4)
{
return 0;
}
struct SRE
{
uint16_t address_family;
uint8_t sre_offset;
uint8_t sre_length;
} __attribute__((__packed__));
uint16_t sre_size = sizeof(struct SRE);
const uint16_t *gre = (const uint16_t *)data;
uint16_t flags = ntohs(gre[0]);
uint16_t version = flags & GRE_VERSION;
uint16_t hdr_offset = 0;
if (version == 0)
{
hdr_offset = 4;
if ((flags & GRE_CHECKSUM) || (flags & GRE_ROUTING))
{
hdr_offset += 4;
}
if (flags & GRE_KEY)
{
hdr_offset += 4;
}
if (flags & GRE_SEQUENCE)
{
hdr_offset += 4;
}
if (flags & GRE_ROUTING)
{
while (hdr_offset + sre_size <= len)
{
struct SRE *sre = (struct SRE *)((char *)data + hdr_offset);
if (sre->sre_length == 0)
{
hdr_offset += sre_size;
break;
}
else
{
hdr_offset += sre_size + sre->sre_length;
}
}
}
}
if (version == 1)
{
hdr_offset = 8;
if (flags & GRE_SEQUENCE)
{
hdr_offset += 4;
}
if (flags & GRE_ACK)
{
hdr_offset += 4;
}
}
if (hdr_offset > len)
{
return 0;
}
return hdr_offset;
}
static inline const char *parse_ether(struct packet *handler, const char *data, uint16_t len)
{
if (unlikely(len < sizeof(struct ethhdr)))
{
PACKET_LOG_DATA_INSUFFICIENCY(LAYER_TYPE_ETHER);
return data;
}
struct layer_record *layer = get_free_layer(handler);
if (unlikely(layer == NULL))
{
return data;
}
uint16_t next_proto = ntohs(((struct ethhdr *)data)->h_proto);
SET_LAYER(handler, layer, LAYER_TYPE_ETHER, sizeof(struct ethhdr), data, len);
// TESTED
return parse_l3(handler, next_proto, layer->pld_ptr, layer->pld_len);
}
static inline const char *parse_ppp(struct packet *handler, const char *data, uint16_t len)
{
if (unlikely(len < 4))
{
PACKET_LOG_DATA_INSUFFICIENCY(LAYER_TYPE_PPP);
return data;
}
struct layer_record *layer = get_free_layer(handler);
if (unlikely(layer == NULL))
{
return data;
}
uint16_t next_proto = ntohs(*((uint16_t *)data + 1));
SET_LAYER(handler, layer, LAYER_TYPE_PPP, 4, data, len);
switch (next_proto)
{
// TESTED
case PPP_IP:
return parse_ipv4(handler, layer->pld_ptr, layer->pld_len);
case PPP_IPV6:
return parse_ipv6(handler, layer->pld_ptr, layer->pld_len);
default:
PACKET_LOG_UNSUPPORT_PROTO("ppp", next_proto);
return layer->pld_ptr;
}
}
static inline const char *parse_vlan(struct packet *handler, const char *data, uint16_t len)
{
struct vlan_hdr
{
uint16_t vlan_cfi;
uint16_t protocol;
} __attribute__((__packed__));
if (unlikely(len < sizeof(struct vlan_hdr)))
{
PACKET_LOG_DATA_INSUFFICIENCY(LAYER_TYPE_VLAN);
return data;
}
struct layer_record *layer = get_free_layer(handler);
if (unlikely(layer == NULL))
{
return data;
}
uint16_t next_proto = ntohs(((struct vlan_hdr *)data)->protocol);
SET_LAYER(handler, layer, LAYER_TYPE_VLAN, sizeof(struct vlan_hdr), data, len);
// TESTED
return parse_l3(handler, next_proto, layer->pld_ptr, layer->pld_len);
}
static inline const char *parse_pppoe_ses(struct packet *handler, const char *data, uint16_t len)
{
#define PPPOE_TYPE_IPV4 0x2100
#define PPPOE_TYPE_IPV6 0x5700
if (unlikely(len < 8))
{
PACKET_LOG_DATA_INSUFFICIENCY(LAYER_TYPE_PPPOE);
return data;
}
struct layer_record *layer = get_free_layer(handler);
if (unlikely(layer == NULL))
{
return data;
}
uint16_t next_proto = *((uint16_t *)data + 3);
SET_LAYER(handler, layer, LAYER_TYPE_PPPOE, 8, data, len);
switch (next_proto)
{
// TESTED
case PPPOE_TYPE_IPV4:
return parse_ipv4(handler, layer->pld_ptr, layer->pld_len);
case PPPOE_TYPE_IPV6:
return parse_ipv6(handler, layer->pld_ptr, layer->pld_len);
default:
PACKET_LOG_UNSUPPORT_PROTO("pppoe", next_proto);
return layer->pld_ptr;
}
}
static inline const char *parse_mpls(struct packet *handler, const char *data, uint16_t len)
{
/*
* MPLS Format
* 0 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Label | Exp |S| TTL |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* Label : Label Value 20 bits
* Exp : Experimental Use 3 bits
* S : Bottom of Stack 1 bit
* TTL : Time to Live 8 bits
*/
#define MPLS_LABEL_MASK (0xFFFFF000)
#define MPLS_EXP_MASK (0x00000E00)
#define MPLS_BLS_MASK (0x00000100)
#define MPLS_TTL_MASK (0x000000FF)
enum mpls_next_proto
{
MPLS_NEXT_PROTO_ETHER = 0x0,
MPLS_NEXT_PROTO_MPLS = 0x1,
MPLS_NEXT_PROTO_IPV4 = 0x4,
MPLS_NEXT_PROTO_IPV6 = 0x6,
};
// 4 + 1
if (unlikely(len < 5))
{
PACKET_LOG_DATA_INSUFFICIENCY(LAYER_TYPE_MPLS);
return data;
}
struct layer_record *layer = get_free_layer(handler);
if (unlikely(layer == NULL))
{
return data;
}
uint16_t hdr_len = 4;
uint32_t *hdr = (uint32_t *)data;
unsigned int mpls_bls = (ntohl(*hdr) & MPLS_BLS_MASK) >> 8;
enum mpls_next_proto next_proto;
if (mpls_bls == 1)
{
switch ((((uint8_t *)(data + 4))[0]) >> 4)
{
case 0:
/*
* PW Ethernet Control Word
* 0 1 2 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |0 0 0 0| Reserved | Sequence Number |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* Reference: https://tools.ietf.org/html/rfc4448
*/
hdr_len += 4; // skip PW Ethernet Control Word
next_proto = MPLS_NEXT_PROTO_ETHER;
break;
case 4:
next_proto = MPLS_NEXT_PROTO_IPV4;
break;
case 6:
next_proto = MPLS_NEXT_PROTO_IPV6;
break;
default:
next_proto = MPLS_NEXT_PROTO_ETHER;
break;
}
}
else
{
next_proto = MPLS_NEXT_PROTO_MPLS;
}
SET_LAYER(handler, layer, LAYER_TYPE_MPLS, hdr_len, data, len);
switch (next_proto)
{
// TESTED
case MPLS_NEXT_PROTO_IPV4:
return parse_ipv4(handler, layer->pld_ptr, layer->pld_len);
case MPLS_NEXT_PROTO_IPV6:
return parse_ipv6(handler, layer->pld_ptr, layer->pld_len);
// TESTED
case MPLS_NEXT_PROTO_ETHER:
return parse_ether(handler, layer->pld_ptr, layer->pld_len);
// TESTED
case MPLS_NEXT_PROTO_MPLS:
return parse_mpls(handler, layer->pld_ptr, layer->pld_len);
default:
// unreachable
return layer->pld_ptr;
}
}
static inline const char *parse_ipv4(struct packet *handler, const char *data, uint16_t len)
{
if (unlikely(len < sizeof(struct ip)))
{
PACKET_LOG_DATA_INSUFFICIENCY(LAYER_TYPE_IPV4);
return data;
}
struct layer_record *layer = get_free_layer(handler);
if (unlikely(layer == NULL))
{
return data;
}
struct ip *hdr = (struct ip *)data;
uint8_t next_proto = hdr->ip_p;
uint16_t hdr_len = (hdr->ip_hl & 0xf) * 4u;
SET_LAYER(handler, layer, LAYER_TYPE_IPV4, hdr_len, data, len);
// TESTED
return parse_l4(handler, next_proto, layer->pld_ptr, layer->pld_len);
}
static inline const char *parse_ipv6(struct packet *handler, const char *data, uint16_t len)
{
if (unlikely(len < sizeof(struct ip6_hdr)))
{
PACKET_LOG_DATA_INSUFFICIENCY(LAYER_TYPE_IPV6);
return data;
}
struct layer_record *layer = get_free_layer(handler);
if (unlikely(layer == NULL))
{
return data;
}
uint8_t next_proto = ((struct ip6_hdr *)data)->ip6_nxt;
SET_LAYER(handler, layer, LAYER_TYPE_IPV6, sizeof(struct ip6_hdr), data, len);
// TESTED
return parse_l4(handler, next_proto, layer->pld_ptr, layer->pld_len);
}
static inline const char *parse_gre(struct packet *handler, const char *data, uint16_t len)
{
#define GRE_PRO_IPV4 (0x0800)
#define GRE_PRO_IPV6 (0x86DD)
#define GRE_PRO_ARP (0x0806)
#define GRE_PRO_PPP (0x880B)
uint16_t hdr_len = get_gre_hdr_len(data, len);
if (unlikely(hdr_len == 0))
{
PACKET_LOG_DATA_INSUFFICIENCY(LAYER_TYPE_GRE);
return data;
}
struct layer_record *layer = get_free_layer(handler);
if (unlikely(layer == NULL))
{
return data;
}
uint16_t next_proto = ntohs(*((uint16_t *)data + 1));
SET_LAYER(handler, layer, LAYER_TYPE_GRE, hdr_len, data, len);
switch (next_proto)
{
case GRE_PRO_IPV4:
return parse_ipv4(handler, layer->pld_ptr, layer->pld_len);
case GRE_PRO_IPV6:
return parse_ipv6(handler, layer->pld_ptr, layer->pld_len);
// TESTED
case GRE_PRO_PPP:
return parse_ppp(handler, layer->pld_ptr, layer->pld_len);
default:
PACKET_LOG_UNSUPPORT_PROTO("gre", next_proto);
return layer->pld_ptr;
}
}
static inline const char *parse_udp(struct packet *handler, const char *data, uint16_t len)
{
if (unlikely(len < sizeof(struct udphdr)))
{
PACKET_LOG_DATA_INSUFFICIENCY(LAYER_TYPE_UDP);
return data;
}
struct layer_record *layer = get_free_layer(handler);
if (unlikely(layer == NULL))
{
return data;
}
struct udphdr *hdr = (struct udphdr *)data;
SET_LAYER(handler, layer, LAYER_TYPE_UDP, sizeof(struct udphdr), data, len);
switch (ntohs(hdr->uh_dport))
{
// TESTED
// VXLAN_DPORT
case 4789:
return parse_vxlan(handler, layer->pld_ptr, layer->pld_len);
// TESTED
// GTP1U_PORT
case 2152:
return parse_gtpv1_u(handler, layer->pld_ptr, layer->pld_len);
default:
return layer->pld_ptr;
}
}
static inline const char *parse_tcp(struct packet *handler, const char *data, uint16_t len)
{
if (unlikely(len < sizeof(struct tcphdr)))
{
PACKET_LOG_DATA_INSUFFICIENCY(LAYER_TYPE_TCP);
return data;
}
struct layer_record *layer = get_free_layer(handler);
if (unlikely(layer == NULL))
{
return data;
}
uint16_t hdr_len = ((struct tcphdr *)data)->th_off << 2;
SET_LAYER(handler, layer, LAYER_TYPE_TCP, hdr_len, data, len);
return layer->pld_ptr;
}
static inline const char *parse_vxlan(struct packet *handler, const char *data, uint16_t len)
{
struct vxlan_hdr
{
uint8_t flags[2];
uint16_t gdp;
uint8_t vni[3];
uint8_t reserved;
} __attribute__((__packed__));
if (unlikely(len < sizeof(struct vxlan_hdr)))
{
PACKET_LOG_DATA_INSUFFICIENCY(LAYER_TYPE_VXLAN);
return data;
}
struct layer_record *layer = get_free_layer(handler);
if (unlikely(layer == NULL))
{
return data;
}
SET_LAYER(handler, layer, LAYER_TYPE_VXLAN, sizeof(struct vxlan_hdr), data, len);
// TESTED
return parse_ether(handler, layer->pld_ptr, layer->pld_len);
}
static inline const char *parse_gtpv1_u(struct packet *handler, const char *data, uint16_t len)
{
uint16_t hdr_len = get_gtp_hdr_len(data, len);
if (unlikely(hdr_len == 0))
{
PACKET_LOG_DATA_INSUFFICIENCY(LAYER_TYPE_GTPV1_U);
return data;
}
struct layer_record *layer = get_free_layer(handler);
if (unlikely(layer == NULL))
{
return data;
}
uint8_t next_proto = (((const uint8_t *)(data + hdr_len))[0]) >> 4;
SET_LAYER(handler, layer, LAYER_TYPE_GTPV1_U, hdr_len, data, len);
switch (next_proto)
{
// TESTED
case 4:
return parse_ipv4(handler, layer->pld_ptr, layer->pld_len);
// TESTED
case 6:
return parse_ipv6(handler, layer->pld_ptr, layer->pld_len);
default:
PACKET_LOG_UNSUPPORT_PROTO("gtp", next_proto);
return layer->pld_ptr;
}
}
static inline const char *parse_l3(struct packet *handler, uint16_t next_proto, const char *data, uint16_t len)
{
switch (next_proto)
{
// TESTED
case ETH_P_8021Q:
case ETH_P_8021AD:
return parse_vlan(handler, data, len);
// TESTED
case ETH_P_IP:
return parse_ipv4(handler, data, len);
// TESTED
case ETH_P_IPV6:
return parse_ipv6(handler, data, len);
// TESTED
case ETH_P_PPP_SES:
return parse_pppoe_ses(handler, data, len);
// TESTED
case ETH_P_MPLS_UC:
return parse_mpls(handler, data, len);
default:
// TESTED ARP
PACKET_LOG_UNSUPPORT_ETHPROTO("l3", next_proto);
return data;
}
}
static inline const char *parse_l4(struct packet *handler, uint8_t next_proto, const char *data, uint16_t len)
{
switch (next_proto)
{
// TESTED
case IPPROTO_TCP:
return parse_tcp(handler, data, len);
// TESTED
case IPPROTO_UDP:
return parse_udp(handler, data, len);
// TESTED
case IPPROTO_IPIP:
return parse_ipv4(handler, data, len);
// TESTED
case IPPROTO_IPV6:
return parse_ipv6(handler, data, len);
// TESTED
case IPPROTO_GRE:
return parse_gre(handler, data, len);
default:
PACKET_LOG_UNSUPPORT_IPPROTO("l4", next_proto);
return data;
}
}
/******************************************************************************
* Public API
******************************************************************************/
// return innermost payload
const char *packet_parse(struct packet *handler, const char *data, uint16_t len)
{
handler->layers_used = 0;
handler->layers_size = PACKET_MAX_LAYERS;
handler->data_ptr = data;
handler->data_len = len;
handler->zone_id = 0;
// TESTED
return parse_ether(handler, data, len);
}
void packet_print(const struct packet *handler)
{
if (handler == NULL)
{
return;
}
printf("packet: %p, data_ptr: %p, data_len: %u, layers_used: %u, layers_size: %u\n",
handler, handler->data_ptr, handler->data_len,
handler->layers_used, handler->layers_size);
for (uint8_t i = 0; i < handler->layers_used; i++)
{
const struct layer_record *layer = &handler->layers[i];
printf(" layer[%u]: %p, type: %s, hdr_offset: %u, hdr_ptr: %p, hdr_len: %u, pld_ptr: %p, pld_len: %u\n",
i, layer, layer_type_tostring(layer->type), layer->hdr_offset,
layer->hdr_ptr, layer->hdr_len, layer->pld_ptr, layer->pld_len);
}
}
// return 0 : found
// return -1 : not found
int packet_get_innermost_tuple2(const struct packet *handler, struct tuple2 *tuple)
{
const struct layer_record *layer = NULL;
for (int8_t i = handler->layers_used - 1; i >= 0; i--)
{
layer = &handler->layers[i];
if (layer->type & LAYER_TYPE_L3)
{
set_tuple2((const char *)handler->data_ptr + layer->hdr_offset, layer->type, tuple);
return 0;
}
}
return -1;
}
// return 0 : found
// return -1 : not found
int packet_get_outermost_tuple2(const struct packet *handler, struct tuple2 *tuple)
{
const struct layer_record *layer = NULL;
for (int8_t i = 0; i < handler->layers_used; i++)
{
layer = &handler->layers[i];
if (layer->type & LAYER_TYPE_L3)
{
set_tuple2((const char *)handler->data_ptr + layer->hdr_offset, layer->type, tuple);
return 0;
}
}
return -1;
}
// return 0 : found
// return -1 : not found
int packet_get_innermost_tuple4(const struct packet *handler, struct tuple4 *tuple)
{
const struct layer_record *layer_l3 = NULL;
const struct layer_record *layer_l4 = NULL;
const struct layer_record *layer = NULL;
for (int8_t i = handler->layers_used - 1; i >= 0; i--)
{
layer = &handler->layers[i];
// first get L4 layer
if (layer->type & LAYER_TYPE_L4)
{
layer_l4 = layer;
continue;
}
// second get L3 layer
if (layer->type & LAYER_TYPE_L3)
{
layer_l3 = layer;
break;
}
}
if (layer_l3 && layer_l4)
{
set_tuple4((const char *)handler->data_ptr + layer_l3->hdr_offset, layer_l3->type, tuple);
set_tuple4((const char *)handler->data_ptr + layer_l4->hdr_offset, layer_l4->type, tuple);
return 0;
}
else
{
return -1;
}
}
// return 0 : found
// return -1 : not found
int packet_get_outermost_tuple4(const struct packet *handler, struct tuple4 *tuple)
{
const struct layer_record *layer_l3 = NULL;
const struct layer_record *layer_l4 = NULL;
const struct layer_record *layer = NULL;
for (int8_t i = 0; i < handler->layers_used; i++)
{
layer = &handler->layers[i];
// first get L3 layer
if (layer->type & LAYER_TYPE_L3)
{
layer_l3 = layer;
continue;
}
// second get L4 layer
if (layer->type & LAYER_TYPE_L4)
{
layer_l4 = layer;
break;
}
}
if (layer_l3 && layer_l4)
{
set_tuple4((const char *)handler->data_ptr + layer_l3->hdr_offset, layer_l3->type, tuple);
set_tuple4((const char *)handler->data_ptr + layer_l4->hdr_offset, layer_l4->type, tuple);
return 0;
}
else
{
return -1;
}
}
// return 0 : found
// return -1 : not found
int packet_get_innermost_tuple6(const struct packet *handler, struct tuple6 *tuple)
{
const struct layer_record *layer_l3 = NULL;
const struct layer_record *layer_l4 = NULL;
const struct layer_record *layer = NULL;
for (int8_t i = handler->layers_used - 1; i >= 0; i--)
{
layer = &handler->layers[i];
// first get L4 layer
if (layer->type & LAYER_TYPE_L4)
{
layer_l4 = layer;
continue;
}
// second get L3 layer
if (layer->type & LAYER_TYPE_L3)
{
layer_l3 = layer;
break;
}
}
if (layer_l3 && layer_l4)
{
set_tuple6((const char *)handler->data_ptr + layer_l3->hdr_offset, layer_l3->type, tuple, handler->zone_id);
set_tuple6((const char *)handler->data_ptr + layer_l4->hdr_offset, layer_l4->type, tuple, handler->zone_id);
return 0;
}
else
{
return -1;
}
}
// return 0 : found
// return -1 : not found
int packet_get_outermost_tuple6(const struct packet *handler, struct tuple6 *tuple)
{
const struct layer_record *layer_l3 = NULL;
const struct layer_record *layer_l4 = NULL;
const struct layer_record *layer = NULL;
for (int8_t i = 0; i < handler->layers_used; i++)
{
layer = &handler->layers[i];
// first get L3 layer
if (layer->type & LAYER_TYPE_L3)
{
layer_l3 = layer;
continue;
}
// second get L4 layer
if (layer->type & LAYER_TYPE_L4)
{
layer_l4 = layer;
break;
}
}
if (layer_l3 && layer_l4)
{
set_tuple6((const char *)handler->data_ptr + layer_l3->hdr_offset, layer_l3->type, tuple, handler->zone_id);
set_tuple6((const char *)handler->data_ptr + layer_l4->hdr_offset, layer_l4->type, tuple, handler->zone_id);
return 0;
}
else
{
return -1;
}
}
const struct layer_record *packet_get_innermost_layer(const struct packet *handler, enum layer_type type)
{
const struct layer_record *layer = NULL;
for (int8_t i = handler->layers_used - 1; i >= 0; i--)
{
layer = &handler->layers[i];
if (layer->type & type)
{
return layer;
}
}
return NULL;
}
const struct layer_record *packet_get_outermost_layer(const struct packet *handler, enum layer_type type)
{
const struct layer_record *layer = NULL;
for (int8_t i = 0; i < handler->layers_used; i++)
{
layer = &handler->layers[i];
if (layer->type & type)
{
return layer;
}
}
return NULL;
}
// direction 1: E2I
// direction 0: I2E
uint64_t packet_get_hash(const struct packet *handler, enum ldbc_method method, int direction)
{
uint64_t temp = 0;
uint64_t hash_value = 1;
int inner_addr_len = 0;
int outer_addr_len = 0;
const char *inner_src_addr = NULL;
const char *inner_dst_addr = NULL;
const char *outer_src_addr = NULL;
const char *outer_dst_addr = NULL;
struct tuple2 inner_addr;
struct tuple2 outer_addr;
if (handler == NULL)
{
return hash_value;
}
if (packet_get_innermost_tuple2(handler, &inner_addr) == -1)
{
return hash_value;
}
if (packet_get_outermost_tuple2(handler, &outer_addr) == -1)
{
return hash_value;
}
if (inner_addr.ip_type == IP_TYPE_V4)
{
inner_src_addr = (const char *)&inner_addr.src_addr.v4;
inner_dst_addr = (const char *)&inner_addr.dst_addr.v4;
inner_addr_len = sizeof(struct in_addr);
}
else
{
inner_src_addr = (const char *)&inner_addr.src_addr.v6;
inner_dst_addr = (const char *)&inner_addr.dst_addr.v6;
inner_addr_len = sizeof(struct in6_addr);
}
if (outer_addr.ip_type == IP_TYPE_V4)
{
outer_src_addr = (const char *)&outer_addr.src_addr.v4;
outer_dst_addr = (const char *)&outer_addr.dst_addr.v4;
outer_addr_len = sizeof(struct in_addr);
}
else
{
outer_src_addr = (const char *)&outer_addr.src_addr.v6;
outer_dst_addr = (const char *)&outer_addr.dst_addr.v6;
outer_addr_len = sizeof(struct in6_addr);
}
switch (method)
{
case LDBC_METHOD_HASH_INT_IP:
if (direction)
{
// direction 1: E2I
HASH_VALUE(outer_dst_addr, outer_addr_len, hash_value);
}
else
{
// direction 0: I2E
HASH_VALUE(outer_src_addr, outer_addr_len, hash_value);
}
break;
case LDBC_METHOD_HASH_EXT_IP:
if (direction)
{
// direction 1: E2I
HASH_VALUE(outer_src_addr, outer_addr_len, hash_value);
}
else
{
// direction 0: I2E
HASH_VALUE(outer_dst_addr, outer_addr_len, hash_value);
}
break;
case LDBC_METHOD_HASH_INT_IP_AND_EXT_IP:
HASH_VALUE(outer_src_addr, outer_addr_len, hash_value);
HASH_VALUE(outer_dst_addr, outer_addr_len, temp);
hash_value = hash_value ^ temp;
break;
case LDBC_METHOD_HASH_INNERMOST_INT_IP:
if (direction)
{
// direction 1: E2I
HASH_VALUE(inner_dst_addr, inner_addr_len, hash_value);
}
else
{
// direction 0: I2E
HASH_VALUE(inner_src_addr, inner_addr_len, hash_value);
}
break;
case LDBC_METHOD_HASH_INNERMOST_EXT_IP:
if (direction)
{
// direction 1: E2I
HASH_VALUE(inner_src_addr, inner_addr_len, hash_value);
}
else
{
// direction 0: I2E
HASH_VALUE(inner_dst_addr, inner_addr_len, hash_value);
}
break;
default:
return hash_value;
}
#if 0
char *inner_addr_str = tuple2_tostring(&inner_addr);
char *outer_addr_str = tuple2_tostring(&outer_addr);
printf("%s: outer_addr: %s, inner_addr: %s, dir: %s, hash_method: %s, hash_value: %lu\n",
LOG_PACKET, outer_addr_str, inner_addr_str, (direction ? "E2I" : "I2E"), ldbc_method_tostring(method), hash_value);
free(inner_addr_str);
free(outer_addr_str);
#endif
return hash_value;
}