This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
stellar-stellar/src/ip_reassemble/ip_reassemble.cpp

976 lines
28 KiB
C++
Raw Normal View History

2024-02-22 18:52:04 +08:00
#include <stdlib.h>
#include <string.h>
#include <sys/queue.h>
#include <assert.h>
#include "packet.h"
#include "timestamp.h"
#include "crc32_hash.h"
#include "checksum.h"
#include "ipv4_utils.h"
#include "ipv6_utils.h"
#include "packet_helpers.h"
#include "ip_reassemble.h"
2024-02-22 18:52:04 +08:00
#define IP_FRAG_HASH_FNUM 2
#define PRIME_VALUE 0xeaad8405
#define IP_FRAG_TBL_POS(mgr, sig) ((mgr)->table + ((sig) & (mgr)->entry_mask))
#define IPV4_KEYLEN 1
#define IPV6_KEYLEN 4
#define IPv6_KEY_BYTES(key) (key)[0], (key)[1], (key)[2], (key)[3]
#define IP_REASSEMBLE_DEBUG_ARG1(desc, key, ...) \
do \
{ \
if ((key)->src_dst_len == IPV4_KEYLEN) \
{ \
IP_REASSEMBLE_DEBUG(desc, "key <%lu, %#x>", (key)->src_dst_addr[0], (key)->ip_id); \
} \
else \
{ \
IP_REASSEMBLE_DEBUG(desc, "key <%08lu%08lu%08lu%08lu, %#x>", IPv6_KEY_BYTES((key)->src_dst_addr), (key)->ip_id); \
} \
} while (0)
#define IP_REASSEMBLE_ERROR_ARG1(desc, key, ...) \
do \
{ \
if ((key)->src_dst_len == IPV4_KEYLEN) \
{ \
IP_REASSEMBLE_ERROR(desc, "key <%lu, %#x>", (key)->src_dst_addr[0], (key)->ip_id); \
} \
else \
{ \
IP_REASSEMBLE_ERROR(desc, "key <%08lu%08lu%08lu%08lu, %#x>", IPv6_KEY_BYTES((key)->src_dst_addr), (key)->ip_id); \
} \
} while (0)
/******************************************************************************
* Structs
******************************************************************************/
enum
{
IP_LAST_FRAG_IDX,
IP_FIRST_FRAG_IDX,
IP_MIN_FRAG_NUM,
IP_MAX_FRAG_NUM = 8,
};
struct ip_frag_hdr
{
uint16_t l3_offset;
uint16_t l3_len;
uint16_t hdr_len;
uint8_t next_proto;
void *hdr_data; // need be freed
};
struct ip_frag_pkt
{
uint16_t offset;
uint16_t len;
void *data; // need be freed
};
struct ip_flow_key
{
uint64_t src_dst_addr[4]; // src and dst address (only first 8 bytes used for IPv4)
uint32_t src_dst_len;
uint32_t ip_id; // ipv4: identification is uint16_t; ipv6: identification is uint32_t
uint8_t proto;
};
struct ip_flow
{
struct
{
struct ip_flow *tqe_next;
struct ip_flow **tqe_prev;
} lru;
struct ip_flow_key key;
struct ip_frag_hdr hdr;
uint64_t create_time;
uint32_t expected_total_size;
uint32_t received_frag_size;
uint32_t next_fill_idx;
struct ip_frag_pkt frags[IP_MAX_FRAG_NUM]; // first two entries in the frags[] array are for the last and first fragments.
};
struct ip_reassemble_stat
{
uint64_t find_num;
uint64_t add_num;
uint64_t del_num;
uint64_t fail_total;
uint64_t fail_nospace;
};
struct ip_reassemble_manager
{
// config
bool enable;
uint32_t timeout;
uint32_t bucket_entries;
uint32_t bucket_num;
// runtime
uint32_t entry_used;
uint32_t entry_total;
uint32_t entry_mask;
// stats
struct ip_reassemble_stat stat;
// hash table
struct
{
struct ip_flow *tqh_first;
struct ip_flow **tqh_last;
} lru;
struct ip_flow *last;
struct ip_flow *table; // array of ip_frag_pkt
};
/******************************************************************************
* Private API
******************************************************************************/
static inline uint32_t combine32ms1b(uint32_t x)
{
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x;
}
static inline uint32_t align32pow2(uint32_t x)
{
x--;
x = combine32ms1b(x);
return x + 1;
}
static inline int is_power_of_2(uint32_t n)
{
return n && !(n & (n - 1));
}
static inline int ip_reassemble_check_config(const struct ip_reassemble_config *config)
{
if (config == NULL)
{
IP_REASSEMBLE_DEBUG("invalid config");
return -1;
}
if (config->enable)
{
if (config->timeout == 0)
{
IP_REASSEMBLE_DEBUG("invalid timeout");
return -1;
}
if (config->bucket_entries == 0 || is_power_of_2(config->bucket_entries) == 0)
{
IP_REASSEMBLE_DEBUG("invalid bucket entries, must be power of 2");
return -1;
}
if (config->bucket_num == 0)
{
IP_REASSEMBLE_DEBUG("invalid bucket num");
return -1;
}
}
return 0;
}
/******************************************************************************
* struct ip_flow_key
******************************************************************************/
static inline void ipv4_flow_key_hash(const struct ip_flow_key *key, uint32_t *value1, uint32_t *value2)
{
uint32_t v = 0;
const uint32_t *p = (const uint32_t *)&key->src_dst_addr;
v = crc32_hash_4byte(p[0], PRIME_VALUE);
v = crc32_hash_4byte(p[1], v);
v = crc32_hash_4byte(key->ip_id, v);
*value1 = v;
*value2 = (v << 7) + (v >> 14);
}
static inline void ipv6_flow_key_hash(const struct ip_flow_key *key, uint32_t *value1, uint32_t *value2)
{
uint32_t v = 0;
const uint32_t *p = (const uint32_t *)&key->src_dst_addr;
v = crc32_hash_4byte(p[0], PRIME_VALUE);
v = crc32_hash_4byte(p[1], v);
v = crc32_hash_4byte(p[2], v);
v = crc32_hash_4byte(p[3], v);
v = crc32_hash_4byte(p[4], v);
v = crc32_hash_4byte(p[5], v);
v = crc32_hash_4byte(p[6], v);
v = crc32_hash_4byte(p[7], v);
v = crc32_hash_4byte(key->ip_id, v);
*value1 = v;
*value2 = (v << 7) + (v >> 14);
}
static inline uint64_t ip_flow_key_cmp(const struct ip_flow_key *key1, const struct ip_flow_key *key2)
{
if (key1->ip_id != key2->ip_id)
{
return 1;
}
if (key1->src_dst_len != key2->src_dst_len)
{
return 1;
}
for (uint32_t i = 0; i < key1->src_dst_len; i++)
{
if (key1->src_dst_addr[i] != key2->src_dst_addr[i])
{
return 1;
}
}
return 0;
}
static inline int ip_flow_key_is_empty(const struct ip_flow_key *key)
{
return (key->src_dst_len == 0);
}
static inline void ip_flow_key_zero(struct ip_flow_key *key)
{
key->src_dst_addr[0] = 0;
key->src_dst_addr[1] = 0;
key->src_dst_addr[2] = 0;
key->src_dst_addr[3] = 0;
key->src_dst_len = 0;
key->ip_id = 0;
}
/******************************************************************************
* struct ip_frag_hdr
******************************************************************************/
static inline void *memdup(const void *src, size_t len)
{
if (src == NULL || len == 0)
{
return NULL;
}
void *dst = malloc(len);
if (dst == NULL)
{
return NULL;
}
return memcpy(dst, src, len);
}
static inline void ip_frag_hdr_init(struct ip_frag_hdr *hdr, const struct packet *pkt)
{
struct layer_record *layer = pkt->frag_layer;
if (layer->type == LAYER_TYPE_IPV6)
{
struct ip6_frag *frag_ext = ipv6_hdr_get_frag_ext((const struct ip6_hdr *)layer->hdr_ptr);
hdr->next_proto = frag_ext->ip6f_nxt;
}
else
{
hdr->next_proto = ipv4_hdr_get_proto((const struct ip *)layer->hdr_ptr);
}
hdr->l3_offset = layer->hdr_offset;
hdr->l3_len = layer->hdr_len;
hdr->hdr_len = layer->hdr_offset + layer->hdr_len;
hdr->hdr_data = memdup(pkt->data_ptr, hdr->hdr_len);
}
static inline void ip_frag_hdr_free(struct ip_frag_hdr *hdr)
{
hdr->next_proto = 0;
hdr->l3_offset = 0;
hdr->l3_len = 0;
hdr->hdr_len = 0;
if (hdr->hdr_data != NULL)
{
free(hdr->hdr_data);
hdr->hdr_data = NULL;
}
}
/******************************************************************************
* struct ip_flow
******************************************************************************/
static inline void ip_flow_init(struct ip_flow *flow, const struct ip_flow_key *key)
{
static const struct ip_frag_pkt zero_frag = {
.offset = 0,
.len = 0,
.data = NULL,
};
flow->lru.tqe_next = NULL;
flow->lru.tqe_prev = NULL;
flow->key = *key;
flow->create_time = timestamp_get_msec();
flow->expected_total_size = UINT32_MAX;
flow->received_frag_size = 0;
flow->next_fill_idx = IP_MIN_FRAG_NUM;
flow->frags[IP_LAST_FRAG_IDX] = zero_frag;
flow->frags[IP_FIRST_FRAG_IDX] = zero_frag;
}
static inline void ip_flow_free(struct ip_flow *flow)
{
for (uint32_t i = 0; i < IP_MAX_FRAG_NUM; i++)
{
struct ip_frag_pkt *frag = &flow->frags[i];
frag->offset = 0;
frag->len = 0;
if (frag->data != NULL)
{
free(frag->data);
frag->data = NULL;
}
}
ip_flow_key_zero(&flow->key);
ip_frag_hdr_free(&flow->hdr);
}
static inline int ip_flow_is_ready(struct ip_flow *flow)
{
return (flow->received_frag_size == flow->expected_total_size && flow->frags[IP_FIRST_FRAG_IDX].data != NULL);
}
// return 0 : success
// return -1 : failed
static inline int ip_flow_update(struct ip_flow *flow, const struct packet *pkt,
char *data, uint16_t len, uint16_t offset, bool more_frags)
{
uint32_t idx;
if (offset == 0)
{
if (flow->frags[IP_FIRST_FRAG_IDX].data != NULL)
{
IP_REASSEMBLE_ERROR_ARG1("duplicate first fragment encountered: ", &flow->key);
return -1;
}
idx = IP_FIRST_FRAG_IDX;
ip_frag_hdr_init(&flow->hdr, pkt);
}
else if (more_frags == 0)
{
if (flow->frags[IP_LAST_FRAG_IDX].data != NULL)
{
IP_REASSEMBLE_ERROR_ARG1("duplicate last fragment encountered: ", &flow->key);
return -1;
}
idx = IP_LAST_FRAG_IDX;
flow->expected_total_size = offset + len;
}
else
{
if (flow->next_fill_idx >= IP_MAX_FRAG_NUM)
{
IP_REASSEMBLE_ERROR_ARG1("max number of fragment exceeded: ", &flow->key);
return -1;
}
idx = flow->next_fill_idx;
flow->next_fill_idx++;
}
flow->received_frag_size += len;
flow->frags[idx].data = memdup(data, len);
flow->frags[idx].offset = offset;
flow->frags[idx].len = len;
return 0;
}
/******************************************************************************
* ip flow table
******************************************************************************/
static inline void ip_flow_table_add(struct ip_reassemble_manager *mgr, struct ip_flow *flow)
{
TAILQ_INSERT_TAIL(&mgr->lru, flow, lru);
mgr->entry_used++;
mgr->stat.add_num++;
}
static inline void ip_flow_table_del(struct ip_reassemble_manager *mgr, struct ip_flow *flow)
{
TAILQ_REMOVE(&mgr->lru, flow, lru);
mgr->entry_used--;
mgr->stat.del_num++;
}
static inline void ip_flow_table_reuse(struct ip_reassemble_manager *mgr, struct ip_flow *flow)
{
ip_flow_table_del(mgr, flow);
ip_flow_table_add(mgr, flow);
}
/*
* if return NULL, then *free and *expired are valid
* free : the first empty entry in the bucket
* expired: the first timed-out entry in the bucket
*/
static struct ip_flow *ip_flow_table_find(struct ip_reassemble_manager *mgr, const struct ip_flow_key *key, struct ip_flow **free, struct ip_flow **expired)
{
mgr->stat.find_num++;
if (mgr->last != NULL && ip_flow_key_cmp(key, &mgr->last->key) == 0)
{
return mgr->last;
}
uint32_t sig1 = 0;
uint32_t sig2 = 0;
uint64_t timeout = mgr->timeout;
uint32_t assoc = mgr->bucket_entries;
uint64_t tms = timestamp_get_msec();
if (key->src_dst_len == IPV4_KEYLEN)
{
ipv4_flow_key_hash(key, &sig1, &sig2);
}
else
{
ipv6_flow_key_hash(key, &sig1, &sig2);
}
// get the bucket by hash
struct ip_flow *p1 = IP_FRAG_TBL_POS(mgr, sig1);
struct ip_flow *p2 = IP_FRAG_TBL_POS(mgr, sig2);
// search in the bucket
struct ip_flow *old = NULL;
struct ip_flow *empty = NULL;
for (uint32_t i = 0; i != assoc; i++)
{
if (ip_flow_key_cmp(key, &p1[i].key) == 0)
{
*free = NULL;
*expired = NULL;
return p1 + i;
}
else if (ip_flow_key_is_empty(&p1[i].key))
{
empty = (empty == NULL) ? (p1 + i) : empty;
}
else if (timeout + p1[i].create_time < tms)
{
old = (old == NULL) ? (p1 + i) : old;
}
if (ip_flow_key_cmp(key, &p2[i].key) == 0)
{
*free = NULL;
*expired = NULL;
return p2 + i;
}
else if (ip_flow_key_is_empty(&p2[i].key))
{
empty = (empty == NULL) ? (p2 + i) : empty;
}
else if (timeout + p2[i].create_time < tms)
{
old = (old == NULL) ? (p2 + i) : old;
}
}
*free = empty;
*expired = old;
return NULL;
}
static struct ip_flow *ip_flow_table_update(struct ip_reassemble_manager *mgr, const struct ip_flow_key *key)
{
struct ip_flow *free = NULL;
struct ip_flow *expired = NULL;
struct ip_flow *flow = NULL;
uint64_t tms = timestamp_get_msec();
flow = ip_flow_table_find(mgr, key, &free, &expired);
if (flow == NULL)
{
if (expired)
{
IP_REASSEMBLE_DEBUG_ARG1("ip flow new (use expired iterm): ", key);
ip_flow_free(expired);
ip_flow_init(expired, key);
ip_flow_table_reuse(mgr, expired);
mgr->last = expired;
return expired;
}
if (free)
{
IP_REASSEMBLE_DEBUG_ARG1("ip flow new (use free iterm): ", key);
ip_flow_init(free, key);
ip_flow_table_add(mgr, free);
mgr->last = free;
return free;
}
// no space
IP_REASSEMBLE_DEBUG_ARG1("bucket full discarding new fragmented packets: ", key);
mgr->stat.fail_nospace++;
return NULL;
}
else
{
// expired
if (mgr->timeout + flow->create_time < tms)
{
IP_REASSEMBLE_DEBUG_ARG1("ip flow find, but expired: ", key);
ip_flow_free(flow);
ip_flow_init(flow, key);
ip_flow_table_reuse(mgr, flow);
mgr->last = flow;
return flow;
}
// not expired
else
{
IP_REASSEMBLE_DEBUG_ARG1("ip flow find, not expired: ", key);
mgr->last = flow;
return flow;
}
}
}
void ip_flow_table_expire(struct ip_reassemble_manager *mgr)
{
struct ip_flow *flow = NULL;
uint64_t curr_ts = timestamp_get_msec();
uint64_t timeout = mgr->timeout;
TAILQ_FOREACH(flow, &mgr->lru, lru)
if (timeout + flow->create_time < curr_ts)
{
IP_REASSEMBLE_DEBUG_ARG1("time expires discarding old fragmented packets: ", &flow->key);
ip_flow_free(flow);
ip_flow_table_del(mgr, flow);
}
}
/******************************************************************************
* frag reassemble
******************************************************************************/
static struct packet *ip_frag_reassemble(struct ip_flow *flow)
{
struct ip_frag_pkt *first = &flow->frags[IP_FIRST_FRAG_IDX];
struct ip_frag_pkt *last = &flow->frags[IP_LAST_FRAG_IDX];
struct ip_frag_pkt *temp = NULL;
// calculate the length of the reassembled packet
uint32_t buff_len = flow->expected_total_size + flow->hdr.hdr_len;
char *buff = (char *)calloc(1, buff_len + sizeof(struct packet));
if (buff == NULL)
{
IP_REASSEMBLE_ERROR("unable to allocate memory");
return NULL;
}
char *ptr = buff + sizeof(struct packet);
char *end = ptr + buff_len;
// copy last frag
if (last->len > end - ptr)
{
IP_REASSEMBLE_ERROR_ARG1("last packet length is greater than the expected reassembled length: ", &flow->key);
free(buff);
return NULL;
}
end -= last->len;
memcpy(end, last->data, last->len);
uint32_t loop = 0;
uint16_t last_offset = last->offset;
while (first->len != last_offset)
{
/*
* https://datatracker.ietf.org/doc/html/rfc791
*
* In the case that two or more fragments contain the same data
* either identically or through a partial overlap, this procedure
* will use the more recently arrived copy in the data buffer and
* datagram delivered.
*/
for (uint32_t i = flow->next_fill_idx - 1; i >= IP_MIN_FRAG_NUM; i--)
{
if (i == IP_FIRST_FRAG_IDX || i == IP_LAST_FRAG_IDX)
{
continue;
}
temp = &flow->frags[i];
if (temp->offset + temp->len == last_offset)
{
if (temp->len > end - ptr)
{
IP_REASSEMBLE_ERROR_ARG1("middle fragment packet length doesn't match last fragment packet offset: ", &flow->key);
free(buff);
return NULL;
}
end -= temp->len;
memcpy(end, temp->data, temp->len);
last_offset = temp->offset;
break;
}
}
if (loop > flow->next_fill_idx)
{
IP_REASSEMBLE_ERROR_ARG1("holes appear during frag reassemble: ", &flow->key);
free(buff);
return NULL;
}
loop++;
}
// copy fist fragment data
if (first->len > end - ptr)
{
IP_REASSEMBLE_ERROR_ARG1("last packet length is greater than the expected reassembled length: ", &flow->key);
free(buff);
return NULL;
}
end -= first->len;
memcpy(end, first->data, first->len);
// copy frag hdr
if (flow->hdr.hdr_len > end - ptr)
{
IP_REASSEMBLE_ERROR_ARG1("hdr length is greater than the expected reassembled length: ", &flow->key);
free(buff);
return NULL;
}
end -= flow->hdr.hdr_len;
memcpy(end, flow->hdr.hdr_data, flow->hdr.hdr_len);
assert(ptr == end);
if (flow->key.src_dst_len == IPV4_KEYLEN)
{
// update ip total length & ip checksum
struct ip *hdr = (struct ip *)(ptr + flow->hdr.l3_offset);
ipv4_hdr_set_total_len(hdr, buff_len - flow->hdr.l3_offset); // update total length
ipv4_hdr_set_mf_flag(hdr, false); // update more fragment flag
ipv4_hdr_set_frag_offset(hdr, 0); // update fragment offset
hdr->ip_sum = 0; // update checksum
hdr->ip_sum = checksum((char *)hdr, flow->hdr.l3_len);
}
else
{
// update ipv6 payload length & next header
struct ip6_hdr *hdr = (struct ip6_hdr *)(ptr + flow->hdr.l3_offset);
ipv6_hdr_set_payload_len(hdr, flow->expected_total_size); // update payload length
ipv6_hdr_set_next_header(hdr, flow->hdr.next_proto); // update next header
}
// create a new packet
struct packet *new_pkt = (struct packet *)buff;
packet_parse(new_pkt, buff + sizeof(struct packet), buff_len);
return new_pkt;
}
/******************************************************************************
* Public API
******************************************************************************/
struct ip_reassemble_manager *ip_reassemble_manager_create(const struct ip_reassemble_config *config)
{
2024-02-22 18:52:04 +08:00
if (ip_reassemble_check_config(config) != 0)
{
return NULL;
}
struct ip_reassemble_manager *mgr = (struct ip_reassemble_manager *)calloc(1, sizeof(struct ip_reassemble_manager));
if (mgr == NULL)
{
IP_REASSEMBLE_ERROR("unable to allocate memory");
return NULL;
}
mgr->enable = config->enable;
mgr->timeout = config->timeout;
mgr->bucket_entries = config->bucket_entries;
mgr->bucket_num = config->bucket_num;
if (!mgr->enable)
{
return mgr;
}
uint64_t entry_total = align32pow2(mgr->bucket_num) * mgr->bucket_entries * IP_FRAG_HASH_FNUM;
if (entry_total > UINT32_MAX)
{
IP_REASSEMBLE_ERROR("bucket_num * bucket_entries is too large");
free(mgr);
return NULL;
}
mgr->entry_total = (uint32_t)entry_total;
mgr->entry_mask = (mgr->entry_total - 1) & ~(mgr->bucket_entries - 1);
mgr->table = (struct ip_flow *)calloc(mgr->entry_total, sizeof(struct ip_flow));
if (mgr->table == NULL)
{
IP_REASSEMBLE_ERROR("unable to allocate memory");
free(mgr);
return NULL;
}
TAILQ_INIT(&(mgr->lru));
return mgr;
}
void ip_reassemble_manager_destory(struct ip_reassemble_manager *mgr)
{
2024-02-22 18:52:04 +08:00
if (mgr)
{
if (mgr->table)
{
for (uint32_t i = 0; i < mgr->entry_total; i++)
{
ip_flow_free(mgr->table + i);
}
free(mgr->table);
mgr->table = NULL;
}
free(mgr);
mgr = NULL;
}
}
void ip_reassemble_manager_stat(struct ip_reassemble_manager *mgr)
{
// TODO
}
/*
* Returns the reassembled packet, or NULL if the packet is not reassembled
* The returned packet should be freed by calling the packet_free() function
*/
2024-02-22 18:52:04 +08:00
struct packet *ip_reassemble_packet(struct ip_reassemble_manager *mgr, const struct packet *pkt)
{
struct packet *pkt1;
struct packet *pkt2;
if (!mgr->enable)
{
return NULL;
}
const struct layer_record *layer = pkt->frag_layer;
if (layer == NULL)
{
return NULL;
}
if (layer->type == LAYER_TYPE_IPV4)
{
pkt1 = ipv4_reassemble_packet(mgr, pkt);
if (pkt1 && pkt1->frag_layer)
{
pkt2 = ip_reassemble_packet(mgr, pkt);
packet_free(pkt1);
return pkt2;
}
return pkt1;
}
else if (layer->type == LAYER_TYPE_IPV6)
{
pkt1 = ipv6_reassemble_packet(mgr, pkt);
if (pkt1 && pkt1->frag_layer)
{
pkt2 = ip_reassemble_packet(mgr, pkt);
packet_free(pkt1);
return pkt2;
}
return pkt1;
}
else
{
return NULL;
}
}
struct packet *ipv4_reassemble_packet(struct ip_reassemble_manager *mgr, const struct packet *pkt)
{
2024-02-22 18:52:04 +08:00
struct layer_record *layer = pkt->frag_layer;
struct ip *hdr = (struct ip *)layer->hdr_ptr;
char *data = (char *)layer->pld_ptr;
uint16_t len = ipv4_hdr_get_total_len(hdr) - ipv4_hdr_get_hdr_len(hdr);
if (len > layer->pld_len)
{
IP_REASSEMBLE_ERROR("unexpected header length on fragmented packet, ip_id: %lu", ipv4_hdr_get_ipid(hdr));
return NULL;
}
struct ip_flow_key key = {0};
uint64_t src_addr = hdr->ip_src.s_addr;
uint64_t dst_addr = hdr->ip_dst.s_addr;
key.src_dst_addr[0] = src_addr << 32 | dst_addr;
key.src_dst_len = IPV4_KEYLEN;
key.ip_id = ipv4_hdr_get_ipid(hdr);
key.proto = ipv4_hdr_get_proto(hdr);
struct ip_flow *flow = ip_flow_table_update(mgr, &key);
if (flow == NULL)
{
return NULL;
}
bool more_frags = ipv4_hdr_get_mf_flag(hdr);
uint16_t offset = ipv4_hdr_get_frag_offset(hdr);
if (ip_flow_update(flow, pkt, data, len, offset, more_frags) != 0)
{
ip_flow_free(flow);
ip_flow_table_del(mgr, flow);
return NULL;
}
if (!ip_flow_is_ready(flow))
{
return NULL;
}
struct packet *new_pkt = ip_frag_reassemble(flow);
ip_flow_free(flow);
ip_flow_table_del(mgr, flow);
return new_pkt;
}
2024-02-22 18:52:04 +08:00
/*
* https://datatracker.ietf.org/doc/html/rfc8200#section-4.5
*
* Note: unlike IPv4, fragmentation in IPv6 is performed only by source nodes,
* not by routers along a packet's delivery path
*/
/*
* original packet:
* +-----------------+-----------------+--------+--------+-//-+--------+
* | Per-Fragment |Ext & Upper-Layer| first | second | | last |
* | Headers | Headers |fragment|fragment|....|fragment|
* +-----------------+-----------------+--------+--------+-//-+--------+
*
* fragment packets:
* +-----------------+--------+-------------------+----------+
* | Per-Fragment |Fragment| Ext & Upper-Layer | first |
* | Headers | Header | Headers | fragment |
* +-----------------+--------+-------------------+----------+
*
* +-----------------+--------+----------+
* | Per-Fragment |Fragment| second |
* | Headers | Header | fragment |
* +-----------------+--------+----------+
* o
* o
* o
* +-----------------+--------+----------+
* | Per-Fragment |Fragment| last |
* | Headers | Header | fragment |
* +-----------------+--------+----------+
*
* reassembled packet:
* +-----------------+-----------------+--------+--------+-//-+--------+
* | Per-Fragment |Ext & Upper-Layer| first | second | | last |
* | Headers | Headers |fragment|fragment|....|fragment|
* +-----------------+-----------------+--------+--------+-//-+--------+
*/
struct packet *ipv6_reassemble_packet(struct ip_reassemble_manager *mgr, const struct packet *pkt)
{
2024-02-22 18:52:04 +08:00
struct layer_record *layer = pkt->frag_layer;
const struct ip6_hdr *hdr = (const struct ip6_hdr *)layer->hdr_ptr;
struct ip6_frag *frag_ext = ipv6_hdr_get_frag_ext(hdr);
if (frag_ext == NULL)
{
return NULL;
}
struct ip_flow_key key = {0};
memcpy(&key.src_dst_addr[0], hdr->ip6_src.s6_addr, 16);
memcpy(&key.src_dst_addr[2], hdr->ip6_dst.s6_addr, 16);
key.src_dst_len = IPV6_KEYLEN;
key.ip_id = frag_ext->ip6f_ident;
key.proto = 0; // only first fragment has the upper layer protocol
struct ip_flow *flow = ip_flow_table_update(mgr, &key);
if (flow == NULL)
{
return NULL;
}
char *data = (char *)layer->hdr_ptr + sizeof(struct ip6_hdr) + sizeof(struct ip6_frag);
uint16_t len = ipv6_hdr_get_payload_len(hdr) - sizeof(struct ip6_frag);
if (data + len > pkt->data_ptr + pkt->data_len)
{
IP_REASSEMBLE_ERROR("unexpected header length on fragmented packet, frag_id: %lu", frag_ext->ip6f_ident);
return NULL;
}
bool more_frags = (frag_ext->ip6f_offlg & IP6F_MORE_FRAG);
uint16_t offset = ntohs(frag_ext->ip6f_offlg & IP6F_OFF_MASK);
if (ip_flow_update(flow, pkt, data, len, offset, more_frags) != 0)
{
ip_flow_free(flow);
ip_flow_table_del(mgr, flow);
return NULL;
}
if (!ip_flow_is_ready(flow))
{
return NULL;
}
struct packet *new_pkt = ip_frag_reassemble(flow);
ip_flow_free(flow);
ip_flow_table_del(mgr, flow);
return new_pkt;
}