This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
pxz-hos-client-cpp-module/support/aws-sdk-cpp-master/aws-cpp-sdk-sagemaker/include/aws/sagemaker/model/HumanLoopActivationConditionsConfig.h

139 lines
6.9 KiB
C++

/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include <aws/sagemaker/SageMaker_EXPORTS.h>
#include <aws/core/utils/memory/stl/AWSString.h>
#include <utility>
namespace Aws
{
namespace Utils
{
namespace Json
{
class JsonValue;
class JsonView;
} // namespace Json
} // namespace Utils
namespace SageMaker
{
namespace Model
{
/**
* <p>Defines under what conditions SageMaker creates a human loop. Used within .
* See for the required format of activation conditions.</p><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HumanLoopActivationConditionsConfig">AWS
* API Reference</a></p>
*/
class AWS_SAGEMAKER_API HumanLoopActivationConditionsConfig
{
public:
HumanLoopActivationConditionsConfig();
HumanLoopActivationConditionsConfig(Aws::Utils::Json::JsonView jsonValue);
HumanLoopActivationConditionsConfig& operator=(Aws::Utils::Json::JsonView jsonValue);
Aws::Utils::Json::JsonValue Jsonize() const;
/**
* <p>JSON expressing use-case specific conditions declaratively. If any condition
* is matched, atomic tasks are created against the configured work team. The set
* of conditions is different for Rekognition and Textract. For more information
* about how to structure the JSON, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-human-fallback-conditions-json-schema.html">JSON
* Schema for Human Loop Activation Conditions in Amazon Augmented AI</a> in the
* <i>Amazon SageMaker Developer Guide</i>.</p>
*/
inline const Aws::String& GetHumanLoopActivationConditions() const{ return m_humanLoopActivationConditions; }
/**
* <p>JSON expressing use-case specific conditions declaratively. If any condition
* is matched, atomic tasks are created against the configured work team. The set
* of conditions is different for Rekognition and Textract. For more information
* about how to structure the JSON, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-human-fallback-conditions-json-schema.html">JSON
* Schema for Human Loop Activation Conditions in Amazon Augmented AI</a> in the
* <i>Amazon SageMaker Developer Guide</i>.</p>
*/
inline bool HumanLoopActivationConditionsHasBeenSet() const { return m_humanLoopActivationConditionsHasBeenSet; }
/**
* <p>JSON expressing use-case specific conditions declaratively. If any condition
* is matched, atomic tasks are created against the configured work team. The set
* of conditions is different for Rekognition and Textract. For more information
* about how to structure the JSON, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-human-fallback-conditions-json-schema.html">JSON
* Schema for Human Loop Activation Conditions in Amazon Augmented AI</a> in the
* <i>Amazon SageMaker Developer Guide</i>.</p>
*/
inline void SetHumanLoopActivationConditions(const Aws::String& value) { m_humanLoopActivationConditionsHasBeenSet = true; m_humanLoopActivationConditions = value; }
/**
* <p>JSON expressing use-case specific conditions declaratively. If any condition
* is matched, atomic tasks are created against the configured work team. The set
* of conditions is different for Rekognition and Textract. For more information
* about how to structure the JSON, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-human-fallback-conditions-json-schema.html">JSON
* Schema for Human Loop Activation Conditions in Amazon Augmented AI</a> in the
* <i>Amazon SageMaker Developer Guide</i>.</p>
*/
inline void SetHumanLoopActivationConditions(Aws::String&& value) { m_humanLoopActivationConditionsHasBeenSet = true; m_humanLoopActivationConditions = std::move(value); }
/**
* <p>JSON expressing use-case specific conditions declaratively. If any condition
* is matched, atomic tasks are created against the configured work team. The set
* of conditions is different for Rekognition and Textract. For more information
* about how to structure the JSON, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-human-fallback-conditions-json-schema.html">JSON
* Schema for Human Loop Activation Conditions in Amazon Augmented AI</a> in the
* <i>Amazon SageMaker Developer Guide</i>.</p>
*/
inline void SetHumanLoopActivationConditions(const char* value) { m_humanLoopActivationConditionsHasBeenSet = true; m_humanLoopActivationConditions.assign(value); }
/**
* <p>JSON expressing use-case specific conditions declaratively. If any condition
* is matched, atomic tasks are created against the configured work team. The set
* of conditions is different for Rekognition and Textract. For more information
* about how to structure the JSON, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-human-fallback-conditions-json-schema.html">JSON
* Schema for Human Loop Activation Conditions in Amazon Augmented AI</a> in the
* <i>Amazon SageMaker Developer Guide</i>.</p>
*/
inline HumanLoopActivationConditionsConfig& WithHumanLoopActivationConditions(const Aws::String& value) { SetHumanLoopActivationConditions(value); return *this;}
/**
* <p>JSON expressing use-case specific conditions declaratively. If any condition
* is matched, atomic tasks are created against the configured work team. The set
* of conditions is different for Rekognition and Textract. For more information
* about how to structure the JSON, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-human-fallback-conditions-json-schema.html">JSON
* Schema for Human Loop Activation Conditions in Amazon Augmented AI</a> in the
* <i>Amazon SageMaker Developer Guide</i>.</p>
*/
inline HumanLoopActivationConditionsConfig& WithHumanLoopActivationConditions(Aws::String&& value) { SetHumanLoopActivationConditions(std::move(value)); return *this;}
/**
* <p>JSON expressing use-case specific conditions declaratively. If any condition
* is matched, atomic tasks are created against the configured work team. The set
* of conditions is different for Rekognition and Textract. For more information
* about how to structure the JSON, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/a2i-human-fallback-conditions-json-schema.html">JSON
* Schema for Human Loop Activation Conditions in Amazon Augmented AI</a> in the
* <i>Amazon SageMaker Developer Guide</i>.</p>
*/
inline HumanLoopActivationConditionsConfig& WithHumanLoopActivationConditions(const char* value) { SetHumanLoopActivationConditions(value); return *this;}
private:
Aws::String m_humanLoopActivationConditions;
bool m_humanLoopActivationConditionsHasBeenSet;
};
} // namespace Model
} // namespace SageMaker
} // namespace Aws