This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
pxz-hos-client-cpp-module/support/aws-sdk-cpp-master/aws-cpp-sdk-sagemaker/include/aws/sagemaker/model/CreateTrainingJobRequest.h

1191 lines
65 KiB
C++

/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include <aws/sagemaker/SageMaker_EXPORTS.h>
#include <aws/sagemaker/SageMakerRequest.h>
#include <aws/core/utils/memory/stl/AWSString.h>
#include <aws/core/utils/memory/stl/AWSMap.h>
#include <aws/sagemaker/model/AlgorithmSpecification.h>
#include <aws/core/utils/memory/stl/AWSVector.h>
#include <aws/sagemaker/model/OutputDataConfig.h>
#include <aws/sagemaker/model/ResourceConfig.h>
#include <aws/sagemaker/model/VpcConfig.h>
#include <aws/sagemaker/model/StoppingCondition.h>
#include <aws/sagemaker/model/CheckpointConfig.h>
#include <aws/sagemaker/model/DebugHookConfig.h>
#include <aws/sagemaker/model/TensorBoardOutputConfig.h>
#include <aws/sagemaker/model/ExperimentConfig.h>
#include <aws/sagemaker/model/Channel.h>
#include <aws/sagemaker/model/Tag.h>
#include <aws/sagemaker/model/DebugRuleConfiguration.h>
#include <utility>
namespace Aws
{
namespace SageMaker
{
namespace Model
{
/**
*/
class AWS_SAGEMAKER_API CreateTrainingJobRequest : public SageMakerRequest
{
public:
CreateTrainingJobRequest();
// Service request name is the Operation name which will send this request out,
// each operation should has unique request name, so that we can get operation's name from this request.
// Note: this is not true for response, multiple operations may have the same response name,
// so we can not get operation's name from response.
inline virtual const char* GetServiceRequestName() const override { return "CreateTrainingJob"; }
Aws::String SerializePayload() const override;
Aws::Http::HeaderValueCollection GetRequestSpecificHeaders() const override;
/**
* <p>The name of the training job. The name must be unique within an AWS Region in
* an AWS account. </p>
*/
inline const Aws::String& GetTrainingJobName() const{ return m_trainingJobName; }
/**
* <p>The name of the training job. The name must be unique within an AWS Region in
* an AWS account. </p>
*/
inline bool TrainingJobNameHasBeenSet() const { return m_trainingJobNameHasBeenSet; }
/**
* <p>The name of the training job. The name must be unique within an AWS Region in
* an AWS account. </p>
*/
inline void SetTrainingJobName(const Aws::String& value) { m_trainingJobNameHasBeenSet = true; m_trainingJobName = value; }
/**
* <p>The name of the training job. The name must be unique within an AWS Region in
* an AWS account. </p>
*/
inline void SetTrainingJobName(Aws::String&& value) { m_trainingJobNameHasBeenSet = true; m_trainingJobName = std::move(value); }
/**
* <p>The name of the training job. The name must be unique within an AWS Region in
* an AWS account. </p>
*/
inline void SetTrainingJobName(const char* value) { m_trainingJobNameHasBeenSet = true; m_trainingJobName.assign(value); }
/**
* <p>The name of the training job. The name must be unique within an AWS Region in
* an AWS account. </p>
*/
inline CreateTrainingJobRequest& WithTrainingJobName(const Aws::String& value) { SetTrainingJobName(value); return *this;}
/**
* <p>The name of the training job. The name must be unique within an AWS Region in
* an AWS account. </p>
*/
inline CreateTrainingJobRequest& WithTrainingJobName(Aws::String&& value) { SetTrainingJobName(std::move(value)); return *this;}
/**
* <p>The name of the training job. The name must be unique within an AWS Region in
* an AWS account. </p>
*/
inline CreateTrainingJobRequest& WithTrainingJobName(const char* value) { SetTrainingJobName(value); return *this;}
/**
* <p>Algorithm-specific parameters that influence the quality of the model. You
* set hyperparameters before you start the learning process. For a list of
* hyperparameters for each training algorithm provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is
* a key-value pair. Each key and value is limited to 256 characters, as specified
* by the <code>Length Constraint</code>. </p>
*/
inline const Aws::Map<Aws::String, Aws::String>& GetHyperParameters() const{ return m_hyperParameters; }
/**
* <p>Algorithm-specific parameters that influence the quality of the model. You
* set hyperparameters before you start the learning process. For a list of
* hyperparameters for each training algorithm provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is
* a key-value pair. Each key and value is limited to 256 characters, as specified
* by the <code>Length Constraint</code>. </p>
*/
inline bool HyperParametersHasBeenSet() const { return m_hyperParametersHasBeenSet; }
/**
* <p>Algorithm-specific parameters that influence the quality of the model. You
* set hyperparameters before you start the learning process. For a list of
* hyperparameters for each training algorithm provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is
* a key-value pair. Each key and value is limited to 256 characters, as specified
* by the <code>Length Constraint</code>. </p>
*/
inline void SetHyperParameters(const Aws::Map<Aws::String, Aws::String>& value) { m_hyperParametersHasBeenSet = true; m_hyperParameters = value; }
/**
* <p>Algorithm-specific parameters that influence the quality of the model. You
* set hyperparameters before you start the learning process. For a list of
* hyperparameters for each training algorithm provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is
* a key-value pair. Each key and value is limited to 256 characters, as specified
* by the <code>Length Constraint</code>. </p>
*/
inline void SetHyperParameters(Aws::Map<Aws::String, Aws::String>&& value) { m_hyperParametersHasBeenSet = true; m_hyperParameters = std::move(value); }
/**
* <p>Algorithm-specific parameters that influence the quality of the model. You
* set hyperparameters before you start the learning process. For a list of
* hyperparameters for each training algorithm provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is
* a key-value pair. Each key and value is limited to 256 characters, as specified
* by the <code>Length Constraint</code>. </p>
*/
inline CreateTrainingJobRequest& WithHyperParameters(const Aws::Map<Aws::String, Aws::String>& value) { SetHyperParameters(value); return *this;}
/**
* <p>Algorithm-specific parameters that influence the quality of the model. You
* set hyperparameters before you start the learning process. For a list of
* hyperparameters for each training algorithm provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is
* a key-value pair. Each key and value is limited to 256 characters, as specified
* by the <code>Length Constraint</code>. </p>
*/
inline CreateTrainingJobRequest& WithHyperParameters(Aws::Map<Aws::String, Aws::String>&& value) { SetHyperParameters(std::move(value)); return *this;}
/**
* <p>Algorithm-specific parameters that influence the quality of the model. You
* set hyperparameters before you start the learning process. For a list of
* hyperparameters for each training algorithm provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is
* a key-value pair. Each key and value is limited to 256 characters, as specified
* by the <code>Length Constraint</code>. </p>
*/
inline CreateTrainingJobRequest& AddHyperParameters(const Aws::String& key, const Aws::String& value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(key, value); return *this; }
/**
* <p>Algorithm-specific parameters that influence the quality of the model. You
* set hyperparameters before you start the learning process. For a list of
* hyperparameters for each training algorithm provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is
* a key-value pair. Each key and value is limited to 256 characters, as specified
* by the <code>Length Constraint</code>. </p>
*/
inline CreateTrainingJobRequest& AddHyperParameters(Aws::String&& key, const Aws::String& value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(std::move(key), value); return *this; }
/**
* <p>Algorithm-specific parameters that influence the quality of the model. You
* set hyperparameters before you start the learning process. For a list of
* hyperparameters for each training algorithm provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is
* a key-value pair. Each key and value is limited to 256 characters, as specified
* by the <code>Length Constraint</code>. </p>
*/
inline CreateTrainingJobRequest& AddHyperParameters(const Aws::String& key, Aws::String&& value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(key, std::move(value)); return *this; }
/**
* <p>Algorithm-specific parameters that influence the quality of the model. You
* set hyperparameters before you start the learning process. For a list of
* hyperparameters for each training algorithm provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is
* a key-value pair. Each key and value is limited to 256 characters, as specified
* by the <code>Length Constraint</code>. </p>
*/
inline CreateTrainingJobRequest& AddHyperParameters(Aws::String&& key, Aws::String&& value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(std::move(key), std::move(value)); return *this; }
/**
* <p>Algorithm-specific parameters that influence the quality of the model. You
* set hyperparameters before you start the learning process. For a list of
* hyperparameters for each training algorithm provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is
* a key-value pair. Each key and value is limited to 256 characters, as specified
* by the <code>Length Constraint</code>. </p>
*/
inline CreateTrainingJobRequest& AddHyperParameters(const char* key, Aws::String&& value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(key, std::move(value)); return *this; }
/**
* <p>Algorithm-specific parameters that influence the quality of the model. You
* set hyperparameters before you start the learning process. For a list of
* hyperparameters for each training algorithm provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is
* a key-value pair. Each key and value is limited to 256 characters, as specified
* by the <code>Length Constraint</code>. </p>
*/
inline CreateTrainingJobRequest& AddHyperParameters(Aws::String&& key, const char* value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(std::move(key), value); return *this; }
/**
* <p>Algorithm-specific parameters that influence the quality of the model. You
* set hyperparameters before you start the learning process. For a list of
* hyperparameters for each training algorithm provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is
* a key-value pair. Each key and value is limited to 256 characters, as specified
* by the <code>Length Constraint</code>. </p>
*/
inline CreateTrainingJobRequest& AddHyperParameters(const char* key, const char* value) { m_hyperParametersHasBeenSet = true; m_hyperParameters.emplace(key, value); return *this; }
/**
* <p>The registry path of the Docker image that contains the training algorithm
* and algorithm-specific metadata, including the input mode. For more information
* about algorithms provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* For information about providing your own algorithms, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using
* Your Own Algorithms with Amazon SageMaker</a>. </p>
*/
inline const AlgorithmSpecification& GetAlgorithmSpecification() const{ return m_algorithmSpecification; }
/**
* <p>The registry path of the Docker image that contains the training algorithm
* and algorithm-specific metadata, including the input mode. For more information
* about algorithms provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* For information about providing your own algorithms, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using
* Your Own Algorithms with Amazon SageMaker</a>. </p>
*/
inline bool AlgorithmSpecificationHasBeenSet() const { return m_algorithmSpecificationHasBeenSet; }
/**
* <p>The registry path of the Docker image that contains the training algorithm
* and algorithm-specific metadata, including the input mode. For more information
* about algorithms provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* For information about providing your own algorithms, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using
* Your Own Algorithms with Amazon SageMaker</a>. </p>
*/
inline void SetAlgorithmSpecification(const AlgorithmSpecification& value) { m_algorithmSpecificationHasBeenSet = true; m_algorithmSpecification = value; }
/**
* <p>The registry path of the Docker image that contains the training algorithm
* and algorithm-specific metadata, including the input mode. For more information
* about algorithms provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* For information about providing your own algorithms, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using
* Your Own Algorithms with Amazon SageMaker</a>. </p>
*/
inline void SetAlgorithmSpecification(AlgorithmSpecification&& value) { m_algorithmSpecificationHasBeenSet = true; m_algorithmSpecification = std::move(value); }
/**
* <p>The registry path of the Docker image that contains the training algorithm
* and algorithm-specific metadata, including the input mode. For more information
* about algorithms provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* For information about providing your own algorithms, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using
* Your Own Algorithms with Amazon SageMaker</a>. </p>
*/
inline CreateTrainingJobRequest& WithAlgorithmSpecification(const AlgorithmSpecification& value) { SetAlgorithmSpecification(value); return *this;}
/**
* <p>The registry path of the Docker image that contains the training algorithm
* and algorithm-specific metadata, including the input mode. For more information
* about algorithms provided by Amazon SageMaker, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>.
* For information about providing your own algorithms, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using
* Your Own Algorithms with Amazon SageMaker</a>. </p>
*/
inline CreateTrainingJobRequest& WithAlgorithmSpecification(AlgorithmSpecification&& value) { SetAlgorithmSpecification(std::move(value)); return *this;}
/**
* <p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can
* assume to perform tasks on your behalf. </p> <p>During model training, Amazon
* SageMaker needs your permission to read input data from an S3 bucket, download a
* Docker image that contains training code, write model artifacts to an S3 bucket,
* write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
* You grant permissions for all of these tasks to an IAM role. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon
* SageMaker Roles</a>. </p> <p>To be able to pass this role to Amazon
* SageMaker, the caller of this API must have the <code>iam:PassRole</code>
* permission.</p>
*/
inline const Aws::String& GetRoleArn() const{ return m_roleArn; }
/**
* <p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can
* assume to perform tasks on your behalf. </p> <p>During model training, Amazon
* SageMaker needs your permission to read input data from an S3 bucket, download a
* Docker image that contains training code, write model artifacts to an S3 bucket,
* write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
* You grant permissions for all of these tasks to an IAM role. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon
* SageMaker Roles</a>. </p> <p>To be able to pass this role to Amazon
* SageMaker, the caller of this API must have the <code>iam:PassRole</code>
* permission.</p>
*/
inline bool RoleArnHasBeenSet() const { return m_roleArnHasBeenSet; }
/**
* <p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can
* assume to perform tasks on your behalf. </p> <p>During model training, Amazon
* SageMaker needs your permission to read input data from an S3 bucket, download a
* Docker image that contains training code, write model artifacts to an S3 bucket,
* write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
* You grant permissions for all of these tasks to an IAM role. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon
* SageMaker Roles</a>. </p> <p>To be able to pass this role to Amazon
* SageMaker, the caller of this API must have the <code>iam:PassRole</code>
* permission.</p>
*/
inline void SetRoleArn(const Aws::String& value) { m_roleArnHasBeenSet = true; m_roleArn = value; }
/**
* <p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can
* assume to perform tasks on your behalf. </p> <p>During model training, Amazon
* SageMaker needs your permission to read input data from an S3 bucket, download a
* Docker image that contains training code, write model artifacts to an S3 bucket,
* write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
* You grant permissions for all of these tasks to an IAM role. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon
* SageMaker Roles</a>. </p> <p>To be able to pass this role to Amazon
* SageMaker, the caller of this API must have the <code>iam:PassRole</code>
* permission.</p>
*/
inline void SetRoleArn(Aws::String&& value) { m_roleArnHasBeenSet = true; m_roleArn = std::move(value); }
/**
* <p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can
* assume to perform tasks on your behalf. </p> <p>During model training, Amazon
* SageMaker needs your permission to read input data from an S3 bucket, download a
* Docker image that contains training code, write model artifacts to an S3 bucket,
* write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
* You grant permissions for all of these tasks to an IAM role. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon
* SageMaker Roles</a>. </p> <p>To be able to pass this role to Amazon
* SageMaker, the caller of this API must have the <code>iam:PassRole</code>
* permission.</p>
*/
inline void SetRoleArn(const char* value) { m_roleArnHasBeenSet = true; m_roleArn.assign(value); }
/**
* <p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can
* assume to perform tasks on your behalf. </p> <p>During model training, Amazon
* SageMaker needs your permission to read input data from an S3 bucket, download a
* Docker image that contains training code, write model artifacts to an S3 bucket,
* write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
* You grant permissions for all of these tasks to an IAM role. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon
* SageMaker Roles</a>. </p> <p>To be able to pass this role to Amazon
* SageMaker, the caller of this API must have the <code>iam:PassRole</code>
* permission.</p>
*/
inline CreateTrainingJobRequest& WithRoleArn(const Aws::String& value) { SetRoleArn(value); return *this;}
/**
* <p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can
* assume to perform tasks on your behalf. </p> <p>During model training, Amazon
* SageMaker needs your permission to read input data from an S3 bucket, download a
* Docker image that contains training code, write model artifacts to an S3 bucket,
* write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
* You grant permissions for all of these tasks to an IAM role. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon
* SageMaker Roles</a>. </p> <p>To be able to pass this role to Amazon
* SageMaker, the caller of this API must have the <code>iam:PassRole</code>
* permission.</p>
*/
inline CreateTrainingJobRequest& WithRoleArn(Aws::String&& value) { SetRoleArn(std::move(value)); return *this;}
/**
* <p>The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can
* assume to perform tasks on your behalf. </p> <p>During model training, Amazon
* SageMaker needs your permission to read input data from an S3 bucket, download a
* Docker image that contains training code, write model artifacts to an S3 bucket,
* write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch.
* You grant permissions for all of these tasks to an IAM role. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">Amazon
* SageMaker Roles</a>. </p> <p>To be able to pass this role to Amazon
* SageMaker, the caller of this API must have the <code>iam:PassRole</code>
* permission.</p>
*/
inline CreateTrainingJobRequest& WithRoleArn(const char* value) { SetRoleArn(value); return *this;}
/**
* <p>An array of <code>Channel</code> objects. Each channel is a named input
* source. <code>InputDataConfig</code> describes the input data and its location.
* </p> <p>Algorithms can accept input data from one or more channels. For example,
* an algorithm might have two channels of input data, <code>training_data</code>
* and <code>validation_data</code>. The configuration for each channel provides
* the S3, EFS, or FSx location where the input data is stored. It also provides
* information about the stored data: the MIME type, compression method, and
* whether the data is wrapped in RecordIO format. </p> <p>Depending on the input
* mode that the algorithm supports, Amazon SageMaker either copies input data
* files from an S3 bucket to a local directory in the Docker container, or makes
* it available as input streams. For example, if you specify an EFS location,
* input data files will be made available as input streams. They do not need to be
* downloaded.</p>
*/
inline const Aws::Vector<Channel>& GetInputDataConfig() const{ return m_inputDataConfig; }
/**
* <p>An array of <code>Channel</code> objects. Each channel is a named input
* source. <code>InputDataConfig</code> describes the input data and its location.
* </p> <p>Algorithms can accept input data from one or more channels. For example,
* an algorithm might have two channels of input data, <code>training_data</code>
* and <code>validation_data</code>. The configuration for each channel provides
* the S3, EFS, or FSx location where the input data is stored. It also provides
* information about the stored data: the MIME type, compression method, and
* whether the data is wrapped in RecordIO format. </p> <p>Depending on the input
* mode that the algorithm supports, Amazon SageMaker either copies input data
* files from an S3 bucket to a local directory in the Docker container, or makes
* it available as input streams. For example, if you specify an EFS location,
* input data files will be made available as input streams. They do not need to be
* downloaded.</p>
*/
inline bool InputDataConfigHasBeenSet() const { return m_inputDataConfigHasBeenSet; }
/**
* <p>An array of <code>Channel</code> objects. Each channel is a named input
* source. <code>InputDataConfig</code> describes the input data and its location.
* </p> <p>Algorithms can accept input data from one or more channels. For example,
* an algorithm might have two channels of input data, <code>training_data</code>
* and <code>validation_data</code>. The configuration for each channel provides
* the S3, EFS, or FSx location where the input data is stored. It also provides
* information about the stored data: the MIME type, compression method, and
* whether the data is wrapped in RecordIO format. </p> <p>Depending on the input
* mode that the algorithm supports, Amazon SageMaker either copies input data
* files from an S3 bucket to a local directory in the Docker container, or makes
* it available as input streams. For example, if you specify an EFS location,
* input data files will be made available as input streams. They do not need to be
* downloaded.</p>
*/
inline void SetInputDataConfig(const Aws::Vector<Channel>& value) { m_inputDataConfigHasBeenSet = true; m_inputDataConfig = value; }
/**
* <p>An array of <code>Channel</code> objects. Each channel is a named input
* source. <code>InputDataConfig</code> describes the input data and its location.
* </p> <p>Algorithms can accept input data from one or more channels. For example,
* an algorithm might have two channels of input data, <code>training_data</code>
* and <code>validation_data</code>. The configuration for each channel provides
* the S3, EFS, or FSx location where the input data is stored. It also provides
* information about the stored data: the MIME type, compression method, and
* whether the data is wrapped in RecordIO format. </p> <p>Depending on the input
* mode that the algorithm supports, Amazon SageMaker either copies input data
* files from an S3 bucket to a local directory in the Docker container, or makes
* it available as input streams. For example, if you specify an EFS location,
* input data files will be made available as input streams. They do not need to be
* downloaded.</p>
*/
inline void SetInputDataConfig(Aws::Vector<Channel>&& value) { m_inputDataConfigHasBeenSet = true; m_inputDataConfig = std::move(value); }
/**
* <p>An array of <code>Channel</code> objects. Each channel is a named input
* source. <code>InputDataConfig</code> describes the input data and its location.
* </p> <p>Algorithms can accept input data from one or more channels. For example,
* an algorithm might have two channels of input data, <code>training_data</code>
* and <code>validation_data</code>. The configuration for each channel provides
* the S3, EFS, or FSx location where the input data is stored. It also provides
* information about the stored data: the MIME type, compression method, and
* whether the data is wrapped in RecordIO format. </p> <p>Depending on the input
* mode that the algorithm supports, Amazon SageMaker either copies input data
* files from an S3 bucket to a local directory in the Docker container, or makes
* it available as input streams. For example, if you specify an EFS location,
* input data files will be made available as input streams. They do not need to be
* downloaded.</p>
*/
inline CreateTrainingJobRequest& WithInputDataConfig(const Aws::Vector<Channel>& value) { SetInputDataConfig(value); return *this;}
/**
* <p>An array of <code>Channel</code> objects. Each channel is a named input
* source. <code>InputDataConfig</code> describes the input data and its location.
* </p> <p>Algorithms can accept input data from one or more channels. For example,
* an algorithm might have two channels of input data, <code>training_data</code>
* and <code>validation_data</code>. The configuration for each channel provides
* the S3, EFS, or FSx location where the input data is stored. It also provides
* information about the stored data: the MIME type, compression method, and
* whether the data is wrapped in RecordIO format. </p> <p>Depending on the input
* mode that the algorithm supports, Amazon SageMaker either copies input data
* files from an S3 bucket to a local directory in the Docker container, or makes
* it available as input streams. For example, if you specify an EFS location,
* input data files will be made available as input streams. They do not need to be
* downloaded.</p>
*/
inline CreateTrainingJobRequest& WithInputDataConfig(Aws::Vector<Channel>&& value) { SetInputDataConfig(std::move(value)); return *this;}
/**
* <p>An array of <code>Channel</code> objects. Each channel is a named input
* source. <code>InputDataConfig</code> describes the input data and its location.
* </p> <p>Algorithms can accept input data from one or more channels. For example,
* an algorithm might have two channels of input data, <code>training_data</code>
* and <code>validation_data</code>. The configuration for each channel provides
* the S3, EFS, or FSx location where the input data is stored. It also provides
* information about the stored data: the MIME type, compression method, and
* whether the data is wrapped in RecordIO format. </p> <p>Depending on the input
* mode that the algorithm supports, Amazon SageMaker either copies input data
* files from an S3 bucket to a local directory in the Docker container, or makes
* it available as input streams. For example, if you specify an EFS location,
* input data files will be made available as input streams. They do not need to be
* downloaded.</p>
*/
inline CreateTrainingJobRequest& AddInputDataConfig(const Channel& value) { m_inputDataConfigHasBeenSet = true; m_inputDataConfig.push_back(value); return *this; }
/**
* <p>An array of <code>Channel</code> objects. Each channel is a named input
* source. <code>InputDataConfig</code> describes the input data and its location.
* </p> <p>Algorithms can accept input data from one or more channels. For example,
* an algorithm might have two channels of input data, <code>training_data</code>
* and <code>validation_data</code>. The configuration for each channel provides
* the S3, EFS, or FSx location where the input data is stored. It also provides
* information about the stored data: the MIME type, compression method, and
* whether the data is wrapped in RecordIO format. </p> <p>Depending on the input
* mode that the algorithm supports, Amazon SageMaker either copies input data
* files from an S3 bucket to a local directory in the Docker container, or makes
* it available as input streams. For example, if you specify an EFS location,
* input data files will be made available as input streams. They do not need to be
* downloaded.</p>
*/
inline CreateTrainingJobRequest& AddInputDataConfig(Channel&& value) { m_inputDataConfigHasBeenSet = true; m_inputDataConfig.push_back(std::move(value)); return *this; }
/**
* <p>Specifies the path to the S3 location where you want to store model
* artifacts. Amazon SageMaker creates subfolders for the artifacts. </p>
*/
inline const OutputDataConfig& GetOutputDataConfig() const{ return m_outputDataConfig; }
/**
* <p>Specifies the path to the S3 location where you want to store model
* artifacts. Amazon SageMaker creates subfolders for the artifacts. </p>
*/
inline bool OutputDataConfigHasBeenSet() const { return m_outputDataConfigHasBeenSet; }
/**
* <p>Specifies the path to the S3 location where you want to store model
* artifacts. Amazon SageMaker creates subfolders for the artifacts. </p>
*/
inline void SetOutputDataConfig(const OutputDataConfig& value) { m_outputDataConfigHasBeenSet = true; m_outputDataConfig = value; }
/**
* <p>Specifies the path to the S3 location where you want to store model
* artifacts. Amazon SageMaker creates subfolders for the artifacts. </p>
*/
inline void SetOutputDataConfig(OutputDataConfig&& value) { m_outputDataConfigHasBeenSet = true; m_outputDataConfig = std::move(value); }
/**
* <p>Specifies the path to the S3 location where you want to store model
* artifacts. Amazon SageMaker creates subfolders for the artifacts. </p>
*/
inline CreateTrainingJobRequest& WithOutputDataConfig(const OutputDataConfig& value) { SetOutputDataConfig(value); return *this;}
/**
* <p>Specifies the path to the S3 location where you want to store model
* artifacts. Amazon SageMaker creates subfolders for the artifacts. </p>
*/
inline CreateTrainingJobRequest& WithOutputDataConfig(OutputDataConfig&& value) { SetOutputDataConfig(std::move(value)); return *this;}
/**
* <p>The resources, including the ML compute instances and ML storage volumes, to
* use for model training. </p> <p>ML storage volumes store model artifacts and
* incremental states. Training algorithms might also use ML storage volumes for
* scratch space. If you want Amazon SageMaker to use the ML storage volume to
* store the training data, choose <code>File</code> as the
* <code>TrainingInputMode</code> in the algorithm specification. For distributed
* training algorithms, specify an instance count greater than 1.</p>
*/
inline const ResourceConfig& GetResourceConfig() const{ return m_resourceConfig; }
/**
* <p>The resources, including the ML compute instances and ML storage volumes, to
* use for model training. </p> <p>ML storage volumes store model artifacts and
* incremental states. Training algorithms might also use ML storage volumes for
* scratch space. If you want Amazon SageMaker to use the ML storage volume to
* store the training data, choose <code>File</code> as the
* <code>TrainingInputMode</code> in the algorithm specification. For distributed
* training algorithms, specify an instance count greater than 1.</p>
*/
inline bool ResourceConfigHasBeenSet() const { return m_resourceConfigHasBeenSet; }
/**
* <p>The resources, including the ML compute instances and ML storage volumes, to
* use for model training. </p> <p>ML storage volumes store model artifacts and
* incremental states. Training algorithms might also use ML storage volumes for
* scratch space. If you want Amazon SageMaker to use the ML storage volume to
* store the training data, choose <code>File</code> as the
* <code>TrainingInputMode</code> in the algorithm specification. For distributed
* training algorithms, specify an instance count greater than 1.</p>
*/
inline void SetResourceConfig(const ResourceConfig& value) { m_resourceConfigHasBeenSet = true; m_resourceConfig = value; }
/**
* <p>The resources, including the ML compute instances and ML storage volumes, to
* use for model training. </p> <p>ML storage volumes store model artifacts and
* incremental states. Training algorithms might also use ML storage volumes for
* scratch space. If you want Amazon SageMaker to use the ML storage volume to
* store the training data, choose <code>File</code> as the
* <code>TrainingInputMode</code> in the algorithm specification. For distributed
* training algorithms, specify an instance count greater than 1.</p>
*/
inline void SetResourceConfig(ResourceConfig&& value) { m_resourceConfigHasBeenSet = true; m_resourceConfig = std::move(value); }
/**
* <p>The resources, including the ML compute instances and ML storage volumes, to
* use for model training. </p> <p>ML storage volumes store model artifacts and
* incremental states. Training algorithms might also use ML storage volumes for
* scratch space. If you want Amazon SageMaker to use the ML storage volume to
* store the training data, choose <code>File</code> as the
* <code>TrainingInputMode</code> in the algorithm specification. For distributed
* training algorithms, specify an instance count greater than 1.</p>
*/
inline CreateTrainingJobRequest& WithResourceConfig(const ResourceConfig& value) { SetResourceConfig(value); return *this;}
/**
* <p>The resources, including the ML compute instances and ML storage volumes, to
* use for model training. </p> <p>ML storage volumes store model artifacts and
* incremental states. Training algorithms might also use ML storage volumes for
* scratch space. If you want Amazon SageMaker to use the ML storage volume to
* store the training data, choose <code>File</code> as the
* <code>TrainingInputMode</code> in the algorithm specification. For distributed
* training algorithms, specify an instance count greater than 1.</p>
*/
inline CreateTrainingJobRequest& WithResourceConfig(ResourceConfig&& value) { SetResourceConfig(std::move(value)); return *this;}
/**
* <p>A <a>VpcConfig</a> object that specifies the VPC that you want your training
* job to connect to. Control access to and from your training container by
* configuring the VPC. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect
* Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
*/
inline const VpcConfig& GetVpcConfig() const{ return m_vpcConfig; }
/**
* <p>A <a>VpcConfig</a> object that specifies the VPC that you want your training
* job to connect to. Control access to and from your training container by
* configuring the VPC. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect
* Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
*/
inline bool VpcConfigHasBeenSet() const { return m_vpcConfigHasBeenSet; }
/**
* <p>A <a>VpcConfig</a> object that specifies the VPC that you want your training
* job to connect to. Control access to and from your training container by
* configuring the VPC. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect
* Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
*/
inline void SetVpcConfig(const VpcConfig& value) { m_vpcConfigHasBeenSet = true; m_vpcConfig = value; }
/**
* <p>A <a>VpcConfig</a> object that specifies the VPC that you want your training
* job to connect to. Control access to and from your training container by
* configuring the VPC. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect
* Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
*/
inline void SetVpcConfig(VpcConfig&& value) { m_vpcConfigHasBeenSet = true; m_vpcConfig = std::move(value); }
/**
* <p>A <a>VpcConfig</a> object that specifies the VPC that you want your training
* job to connect to. Control access to and from your training container by
* configuring the VPC. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect
* Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
*/
inline CreateTrainingJobRequest& WithVpcConfig(const VpcConfig& value) { SetVpcConfig(value); return *this;}
/**
* <p>A <a>VpcConfig</a> object that specifies the VPC that you want your training
* job to connect to. Control access to and from your training container by
* configuring the VPC. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect
* Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
*/
inline CreateTrainingJobRequest& WithVpcConfig(VpcConfig&& value) { SetVpcConfig(std::move(value)); return *this;}
/**
* <p>Specifies a limit to how long a model training job can run. When the job
* reaches the time limit, Amazon SageMaker ends the training job. Use this API to
* cap model training costs.</p> <p>To stop a job, Amazon SageMaker sends the
* algorithm the <code>SIGTERM</code> signal, which delays job termination for 120
* seconds. Algorithms can use this 120-second window to save the model artifacts,
* so the results of training are not lost. </p>
*/
inline const StoppingCondition& GetStoppingCondition() const{ return m_stoppingCondition; }
/**
* <p>Specifies a limit to how long a model training job can run. When the job
* reaches the time limit, Amazon SageMaker ends the training job. Use this API to
* cap model training costs.</p> <p>To stop a job, Amazon SageMaker sends the
* algorithm the <code>SIGTERM</code> signal, which delays job termination for 120
* seconds. Algorithms can use this 120-second window to save the model artifacts,
* so the results of training are not lost. </p>
*/
inline bool StoppingConditionHasBeenSet() const { return m_stoppingConditionHasBeenSet; }
/**
* <p>Specifies a limit to how long a model training job can run. When the job
* reaches the time limit, Amazon SageMaker ends the training job. Use this API to
* cap model training costs.</p> <p>To stop a job, Amazon SageMaker sends the
* algorithm the <code>SIGTERM</code> signal, which delays job termination for 120
* seconds. Algorithms can use this 120-second window to save the model artifacts,
* so the results of training are not lost. </p>
*/
inline void SetStoppingCondition(const StoppingCondition& value) { m_stoppingConditionHasBeenSet = true; m_stoppingCondition = value; }
/**
* <p>Specifies a limit to how long a model training job can run. When the job
* reaches the time limit, Amazon SageMaker ends the training job. Use this API to
* cap model training costs.</p> <p>To stop a job, Amazon SageMaker sends the
* algorithm the <code>SIGTERM</code> signal, which delays job termination for 120
* seconds. Algorithms can use this 120-second window to save the model artifacts,
* so the results of training are not lost. </p>
*/
inline void SetStoppingCondition(StoppingCondition&& value) { m_stoppingConditionHasBeenSet = true; m_stoppingCondition = std::move(value); }
/**
* <p>Specifies a limit to how long a model training job can run. When the job
* reaches the time limit, Amazon SageMaker ends the training job. Use this API to
* cap model training costs.</p> <p>To stop a job, Amazon SageMaker sends the
* algorithm the <code>SIGTERM</code> signal, which delays job termination for 120
* seconds. Algorithms can use this 120-second window to save the model artifacts,
* so the results of training are not lost. </p>
*/
inline CreateTrainingJobRequest& WithStoppingCondition(const StoppingCondition& value) { SetStoppingCondition(value); return *this;}
/**
* <p>Specifies a limit to how long a model training job can run. When the job
* reaches the time limit, Amazon SageMaker ends the training job. Use this API to
* cap model training costs.</p> <p>To stop a job, Amazon SageMaker sends the
* algorithm the <code>SIGTERM</code> signal, which delays job termination for 120
* seconds. Algorithms can use this 120-second window to save the model artifacts,
* so the results of training are not lost. </p>
*/
inline CreateTrainingJobRequest& WithStoppingCondition(StoppingCondition&& value) { SetStoppingCondition(std::move(value)); return *this;}
/**
* <p>An array of key-value pairs. For more information, see <a
* href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using
* Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User
* Guide</i>. </p>
*/
inline const Aws::Vector<Tag>& GetTags() const{ return m_tags; }
/**
* <p>An array of key-value pairs. For more information, see <a
* href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using
* Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User
* Guide</i>. </p>
*/
inline bool TagsHasBeenSet() const { return m_tagsHasBeenSet; }
/**
* <p>An array of key-value pairs. For more information, see <a
* href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using
* Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User
* Guide</i>. </p>
*/
inline void SetTags(const Aws::Vector<Tag>& value) { m_tagsHasBeenSet = true; m_tags = value; }
/**
* <p>An array of key-value pairs. For more information, see <a
* href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using
* Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User
* Guide</i>. </p>
*/
inline void SetTags(Aws::Vector<Tag>&& value) { m_tagsHasBeenSet = true; m_tags = std::move(value); }
/**
* <p>An array of key-value pairs. For more information, see <a
* href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using
* Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User
* Guide</i>. </p>
*/
inline CreateTrainingJobRequest& WithTags(const Aws::Vector<Tag>& value) { SetTags(value); return *this;}
/**
* <p>An array of key-value pairs. For more information, see <a
* href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using
* Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User
* Guide</i>. </p>
*/
inline CreateTrainingJobRequest& WithTags(Aws::Vector<Tag>&& value) { SetTags(std::move(value)); return *this;}
/**
* <p>An array of key-value pairs. For more information, see <a
* href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using
* Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User
* Guide</i>. </p>
*/
inline CreateTrainingJobRequest& AddTags(const Tag& value) { m_tagsHasBeenSet = true; m_tags.push_back(value); return *this; }
/**
* <p>An array of key-value pairs. For more information, see <a
* href="https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what">Using
* Cost Allocation Tags</a> in the <i>AWS Billing and Cost Management User
* Guide</i>. </p>
*/
inline CreateTrainingJobRequest& AddTags(Tag&& value) { m_tagsHasBeenSet = true; m_tags.push_back(std::move(value)); return *this; }
/**
* <p>Isolates the training container. No inbound or outbound network calls can be
* made, except for calls between peers within a training cluster for distributed
* training. If you enable network isolation for training jobs that are configured
* to use a VPC, Amazon SageMaker downloads and uploads customer data and model
* artifacts through the specified VPC, but the training container does not have
* network access.</p>
*/
inline bool GetEnableNetworkIsolation() const{ return m_enableNetworkIsolation; }
/**
* <p>Isolates the training container. No inbound or outbound network calls can be
* made, except for calls between peers within a training cluster for distributed
* training. If you enable network isolation for training jobs that are configured
* to use a VPC, Amazon SageMaker downloads and uploads customer data and model
* artifacts through the specified VPC, but the training container does not have
* network access.</p>
*/
inline bool EnableNetworkIsolationHasBeenSet() const { return m_enableNetworkIsolationHasBeenSet; }
/**
* <p>Isolates the training container. No inbound or outbound network calls can be
* made, except for calls between peers within a training cluster for distributed
* training. If you enable network isolation for training jobs that are configured
* to use a VPC, Amazon SageMaker downloads and uploads customer data and model
* artifacts through the specified VPC, but the training container does not have
* network access.</p>
*/
inline void SetEnableNetworkIsolation(bool value) { m_enableNetworkIsolationHasBeenSet = true; m_enableNetworkIsolation = value; }
/**
* <p>Isolates the training container. No inbound or outbound network calls can be
* made, except for calls between peers within a training cluster for distributed
* training. If you enable network isolation for training jobs that are configured
* to use a VPC, Amazon SageMaker downloads and uploads customer data and model
* artifacts through the specified VPC, but the training container does not have
* network access.</p>
*/
inline CreateTrainingJobRequest& WithEnableNetworkIsolation(bool value) { SetEnableNetworkIsolation(value); return *this;}
/**
* <p>To encrypt all communications between ML compute instances in distributed
* training, choose <code>True</code>. Encryption provides greater security for
* distributed training, but training might take longer. How long it takes depends
* on the amount of communication between compute instances, especially if you use
* a deep learning algorithm in distributed training. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect
* Communications Between ML Compute Instances in a Distributed Training
* Job</a>.</p>
*/
inline bool GetEnableInterContainerTrafficEncryption() const{ return m_enableInterContainerTrafficEncryption; }
/**
* <p>To encrypt all communications between ML compute instances in distributed
* training, choose <code>True</code>. Encryption provides greater security for
* distributed training, but training might take longer. How long it takes depends
* on the amount of communication between compute instances, especially if you use
* a deep learning algorithm in distributed training. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect
* Communications Between ML Compute Instances in a Distributed Training
* Job</a>.</p>
*/
inline bool EnableInterContainerTrafficEncryptionHasBeenSet() const { return m_enableInterContainerTrafficEncryptionHasBeenSet; }
/**
* <p>To encrypt all communications between ML compute instances in distributed
* training, choose <code>True</code>. Encryption provides greater security for
* distributed training, but training might take longer. How long it takes depends
* on the amount of communication between compute instances, especially if you use
* a deep learning algorithm in distributed training. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect
* Communications Between ML Compute Instances in a Distributed Training
* Job</a>.</p>
*/
inline void SetEnableInterContainerTrafficEncryption(bool value) { m_enableInterContainerTrafficEncryptionHasBeenSet = true; m_enableInterContainerTrafficEncryption = value; }
/**
* <p>To encrypt all communications between ML compute instances in distributed
* training, choose <code>True</code>. Encryption provides greater security for
* distributed training, but training might take longer. How long it takes depends
* on the amount of communication between compute instances, especially if you use
* a deep learning algorithm in distributed training. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect
* Communications Between ML Compute Instances in a Distributed Training
* Job</a>.</p>
*/
inline CreateTrainingJobRequest& WithEnableInterContainerTrafficEncryption(bool value) { SetEnableInterContainerTrafficEncryption(value); return *this;}
/**
* <p>To train models using managed spot training, choose <code>True</code>.
* Managed spot training provides a fully managed and scalable infrastructure for
* training machine learning models. this option is useful when training jobs can
* be interrupted and when there is flexibility when the training job is run. </p>
* <p>The complete and intermediate results of jobs are stored in an Amazon S3
* bucket, and can be used as a starting point to train models incrementally.
* Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to
* see when managed spot training jobs are running, interrupted, resumed, or
* completed. </p>
*/
inline bool GetEnableManagedSpotTraining() const{ return m_enableManagedSpotTraining; }
/**
* <p>To train models using managed spot training, choose <code>True</code>.
* Managed spot training provides a fully managed and scalable infrastructure for
* training machine learning models. this option is useful when training jobs can
* be interrupted and when there is flexibility when the training job is run. </p>
* <p>The complete and intermediate results of jobs are stored in an Amazon S3
* bucket, and can be used as a starting point to train models incrementally.
* Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to
* see when managed spot training jobs are running, interrupted, resumed, or
* completed. </p>
*/
inline bool EnableManagedSpotTrainingHasBeenSet() const { return m_enableManagedSpotTrainingHasBeenSet; }
/**
* <p>To train models using managed spot training, choose <code>True</code>.
* Managed spot training provides a fully managed and scalable infrastructure for
* training machine learning models. this option is useful when training jobs can
* be interrupted and when there is flexibility when the training job is run. </p>
* <p>The complete and intermediate results of jobs are stored in an Amazon S3
* bucket, and can be used as a starting point to train models incrementally.
* Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to
* see when managed spot training jobs are running, interrupted, resumed, or
* completed. </p>
*/
inline void SetEnableManagedSpotTraining(bool value) { m_enableManagedSpotTrainingHasBeenSet = true; m_enableManagedSpotTraining = value; }
/**
* <p>To train models using managed spot training, choose <code>True</code>.
* Managed spot training provides a fully managed and scalable infrastructure for
* training machine learning models. this option is useful when training jobs can
* be interrupted and when there is flexibility when the training job is run. </p>
* <p>The complete and intermediate results of jobs are stored in an Amazon S3
* bucket, and can be used as a starting point to train models incrementally.
* Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to
* see when managed spot training jobs are running, interrupted, resumed, or
* completed. </p>
*/
inline CreateTrainingJobRequest& WithEnableManagedSpotTraining(bool value) { SetEnableManagedSpotTraining(value); return *this;}
/**
* <p>Contains information about the output location for managed spot training
* checkpoint data.</p>
*/
inline const CheckpointConfig& GetCheckpointConfig() const{ return m_checkpointConfig; }
/**
* <p>Contains information about the output location for managed spot training
* checkpoint data.</p>
*/
inline bool CheckpointConfigHasBeenSet() const { return m_checkpointConfigHasBeenSet; }
/**
* <p>Contains information about the output location for managed spot training
* checkpoint data.</p>
*/
inline void SetCheckpointConfig(const CheckpointConfig& value) { m_checkpointConfigHasBeenSet = true; m_checkpointConfig = value; }
/**
* <p>Contains information about the output location for managed spot training
* checkpoint data.</p>
*/
inline void SetCheckpointConfig(CheckpointConfig&& value) { m_checkpointConfigHasBeenSet = true; m_checkpointConfig = std::move(value); }
/**
* <p>Contains information about the output location for managed spot training
* checkpoint data.</p>
*/
inline CreateTrainingJobRequest& WithCheckpointConfig(const CheckpointConfig& value) { SetCheckpointConfig(value); return *this;}
/**
* <p>Contains information about the output location for managed spot training
* checkpoint data.</p>
*/
inline CreateTrainingJobRequest& WithCheckpointConfig(CheckpointConfig&& value) { SetCheckpointConfig(std::move(value)); return *this;}
inline const DebugHookConfig& GetDebugHookConfig() const{ return m_debugHookConfig; }
inline bool DebugHookConfigHasBeenSet() const { return m_debugHookConfigHasBeenSet; }
inline void SetDebugHookConfig(const DebugHookConfig& value) { m_debugHookConfigHasBeenSet = true; m_debugHookConfig = value; }
inline void SetDebugHookConfig(DebugHookConfig&& value) { m_debugHookConfigHasBeenSet = true; m_debugHookConfig = std::move(value); }
inline CreateTrainingJobRequest& WithDebugHookConfig(const DebugHookConfig& value) { SetDebugHookConfig(value); return *this;}
inline CreateTrainingJobRequest& WithDebugHookConfig(DebugHookConfig&& value) { SetDebugHookConfig(std::move(value)); return *this;}
/**
* <p>Configuration information for debugging rules.</p>
*/
inline const Aws::Vector<DebugRuleConfiguration>& GetDebugRuleConfigurations() const{ return m_debugRuleConfigurations; }
/**
* <p>Configuration information for debugging rules.</p>
*/
inline bool DebugRuleConfigurationsHasBeenSet() const { return m_debugRuleConfigurationsHasBeenSet; }
/**
* <p>Configuration information for debugging rules.</p>
*/
inline void SetDebugRuleConfigurations(const Aws::Vector<DebugRuleConfiguration>& value) { m_debugRuleConfigurationsHasBeenSet = true; m_debugRuleConfigurations = value; }
/**
* <p>Configuration information for debugging rules.</p>
*/
inline void SetDebugRuleConfigurations(Aws::Vector<DebugRuleConfiguration>&& value) { m_debugRuleConfigurationsHasBeenSet = true; m_debugRuleConfigurations = std::move(value); }
/**
* <p>Configuration information for debugging rules.</p>
*/
inline CreateTrainingJobRequest& WithDebugRuleConfigurations(const Aws::Vector<DebugRuleConfiguration>& value) { SetDebugRuleConfigurations(value); return *this;}
/**
* <p>Configuration information for debugging rules.</p>
*/
inline CreateTrainingJobRequest& WithDebugRuleConfigurations(Aws::Vector<DebugRuleConfiguration>&& value) { SetDebugRuleConfigurations(std::move(value)); return *this;}
/**
* <p>Configuration information for debugging rules.</p>
*/
inline CreateTrainingJobRequest& AddDebugRuleConfigurations(const DebugRuleConfiguration& value) { m_debugRuleConfigurationsHasBeenSet = true; m_debugRuleConfigurations.push_back(value); return *this; }
/**
* <p>Configuration information for debugging rules.</p>
*/
inline CreateTrainingJobRequest& AddDebugRuleConfigurations(DebugRuleConfiguration&& value) { m_debugRuleConfigurationsHasBeenSet = true; m_debugRuleConfigurations.push_back(std::move(value)); return *this; }
inline const TensorBoardOutputConfig& GetTensorBoardOutputConfig() const{ return m_tensorBoardOutputConfig; }
inline bool TensorBoardOutputConfigHasBeenSet() const { return m_tensorBoardOutputConfigHasBeenSet; }
inline void SetTensorBoardOutputConfig(const TensorBoardOutputConfig& value) { m_tensorBoardOutputConfigHasBeenSet = true; m_tensorBoardOutputConfig = value; }
inline void SetTensorBoardOutputConfig(TensorBoardOutputConfig&& value) { m_tensorBoardOutputConfigHasBeenSet = true; m_tensorBoardOutputConfig = std::move(value); }
inline CreateTrainingJobRequest& WithTensorBoardOutputConfig(const TensorBoardOutputConfig& value) { SetTensorBoardOutputConfig(value); return *this;}
inline CreateTrainingJobRequest& WithTensorBoardOutputConfig(TensorBoardOutputConfig&& value) { SetTensorBoardOutputConfig(std::move(value)); return *this;}
inline const ExperimentConfig& GetExperimentConfig() const{ return m_experimentConfig; }
inline bool ExperimentConfigHasBeenSet() const { return m_experimentConfigHasBeenSet; }
inline void SetExperimentConfig(const ExperimentConfig& value) { m_experimentConfigHasBeenSet = true; m_experimentConfig = value; }
inline void SetExperimentConfig(ExperimentConfig&& value) { m_experimentConfigHasBeenSet = true; m_experimentConfig = std::move(value); }
inline CreateTrainingJobRequest& WithExperimentConfig(const ExperimentConfig& value) { SetExperimentConfig(value); return *this;}
inline CreateTrainingJobRequest& WithExperimentConfig(ExperimentConfig&& value) { SetExperimentConfig(std::move(value)); return *this;}
private:
Aws::String m_trainingJobName;
bool m_trainingJobNameHasBeenSet;
Aws::Map<Aws::String, Aws::String> m_hyperParameters;
bool m_hyperParametersHasBeenSet;
AlgorithmSpecification m_algorithmSpecification;
bool m_algorithmSpecificationHasBeenSet;
Aws::String m_roleArn;
bool m_roleArnHasBeenSet;
Aws::Vector<Channel> m_inputDataConfig;
bool m_inputDataConfigHasBeenSet;
OutputDataConfig m_outputDataConfig;
bool m_outputDataConfigHasBeenSet;
ResourceConfig m_resourceConfig;
bool m_resourceConfigHasBeenSet;
VpcConfig m_vpcConfig;
bool m_vpcConfigHasBeenSet;
StoppingCondition m_stoppingCondition;
bool m_stoppingConditionHasBeenSet;
Aws::Vector<Tag> m_tags;
bool m_tagsHasBeenSet;
bool m_enableNetworkIsolation;
bool m_enableNetworkIsolationHasBeenSet;
bool m_enableInterContainerTrafficEncryption;
bool m_enableInterContainerTrafficEncryptionHasBeenSet;
bool m_enableManagedSpotTraining;
bool m_enableManagedSpotTrainingHasBeenSet;
CheckpointConfig m_checkpointConfig;
bool m_checkpointConfigHasBeenSet;
DebugHookConfig m_debugHookConfig;
bool m_debugHookConfigHasBeenSet;
Aws::Vector<DebugRuleConfiguration> m_debugRuleConfigurations;
bool m_debugRuleConfigurationsHasBeenSet;
TensorBoardOutputConfig m_tensorBoardOutputConfig;
bool m_tensorBoardOutputConfigHasBeenSet;
ExperimentConfig m_experimentConfig;
bool m_experimentConfigHasBeenSet;
};
} // namespace Model
} // namespace SageMaker
} // namespace Aws