This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
pxz-hos-client-cpp-module/support/aws-sdk-cpp-master/aws-cpp-sdk-sagemaker/include/aws/sagemaker/model/CreateHyperParameterTuningJobRequest.h

481 lines
27 KiB
C++

/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include <aws/sagemaker/SageMaker_EXPORTS.h>
#include <aws/sagemaker/SageMakerRequest.h>
#include <aws/core/utils/memory/stl/AWSString.h>
#include <aws/sagemaker/model/HyperParameterTuningJobConfig.h>
#include <aws/sagemaker/model/HyperParameterTrainingJobDefinition.h>
#include <aws/core/utils/memory/stl/AWSVector.h>
#include <aws/sagemaker/model/HyperParameterTuningJobWarmStartConfig.h>
#include <aws/sagemaker/model/Tag.h>
#include <utility>
namespace Aws
{
namespace SageMaker
{
namespace Model
{
/**
*/
class AWS_SAGEMAKER_API CreateHyperParameterTuningJobRequest : public SageMakerRequest
{
public:
CreateHyperParameterTuningJobRequest();
// Service request name is the Operation name which will send this request out,
// each operation should has unique request name, so that we can get operation's name from this request.
// Note: this is not true for response, multiple operations may have the same response name,
// so we can not get operation's name from response.
inline virtual const char* GetServiceRequestName() const override { return "CreateHyperParameterTuningJob"; }
Aws::String SerializePayload() const override;
Aws::Http::HeaderValueCollection GetRequestSpecificHeaders() const override;
/**
* <p>The name of the tuning job. This name is the prefix for the names of all
* training jobs that this tuning job launches. The name must be unique within the
* same AWS account and AWS Region. The name must have { } to { } characters. Valid
* characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case
* sensitive.</p>
*/
inline const Aws::String& GetHyperParameterTuningJobName() const{ return m_hyperParameterTuningJobName; }
/**
* <p>The name of the tuning job. This name is the prefix for the names of all
* training jobs that this tuning job launches. The name must be unique within the
* same AWS account and AWS Region. The name must have { } to { } characters. Valid
* characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case
* sensitive.</p>
*/
inline bool HyperParameterTuningJobNameHasBeenSet() const { return m_hyperParameterTuningJobNameHasBeenSet; }
/**
* <p>The name of the tuning job. This name is the prefix for the names of all
* training jobs that this tuning job launches. The name must be unique within the
* same AWS account and AWS Region. The name must have { } to { } characters. Valid
* characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case
* sensitive.</p>
*/
inline void SetHyperParameterTuningJobName(const Aws::String& value) { m_hyperParameterTuningJobNameHasBeenSet = true; m_hyperParameterTuningJobName = value; }
/**
* <p>The name of the tuning job. This name is the prefix for the names of all
* training jobs that this tuning job launches. The name must be unique within the
* same AWS account and AWS Region. The name must have { } to { } characters. Valid
* characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case
* sensitive.</p>
*/
inline void SetHyperParameterTuningJobName(Aws::String&& value) { m_hyperParameterTuningJobNameHasBeenSet = true; m_hyperParameterTuningJobName = std::move(value); }
/**
* <p>The name of the tuning job. This name is the prefix for the names of all
* training jobs that this tuning job launches. The name must be unique within the
* same AWS account and AWS Region. The name must have { } to { } characters. Valid
* characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case
* sensitive.</p>
*/
inline void SetHyperParameterTuningJobName(const char* value) { m_hyperParameterTuningJobNameHasBeenSet = true; m_hyperParameterTuningJobName.assign(value); }
/**
* <p>The name of the tuning job. This name is the prefix for the names of all
* training jobs that this tuning job launches. The name must be unique within the
* same AWS account and AWS Region. The name must have { } to { } characters. Valid
* characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case
* sensitive.</p>
*/
inline CreateHyperParameterTuningJobRequest& WithHyperParameterTuningJobName(const Aws::String& value) { SetHyperParameterTuningJobName(value); return *this;}
/**
* <p>The name of the tuning job. This name is the prefix for the names of all
* training jobs that this tuning job launches. The name must be unique within the
* same AWS account and AWS Region. The name must have { } to { } characters. Valid
* characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case
* sensitive.</p>
*/
inline CreateHyperParameterTuningJobRequest& WithHyperParameterTuningJobName(Aws::String&& value) { SetHyperParameterTuningJobName(std::move(value)); return *this;}
/**
* <p>The name of the tuning job. This name is the prefix for the names of all
* training jobs that this tuning job launches. The name must be unique within the
* same AWS account and AWS Region. The name must have { } to { } characters. Valid
* characters are a-z, A-Z, 0-9, and : + = @ _ % - (hyphen). The name is not case
* sensitive.</p>
*/
inline CreateHyperParameterTuningJobRequest& WithHyperParameterTuningJobName(const char* value) { SetHyperParameterTuningJobName(value); return *this;}
/**
* <p>The <a>HyperParameterTuningJobConfig</a> object that describes the tuning
* job, including the search strategy, the objective metric used to evaluate
* training jobs, ranges of parameters to search, and resource limits for the
* tuning job. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html">How
* Hyperparameter Tuning Works</a>.</p>
*/
inline const HyperParameterTuningJobConfig& GetHyperParameterTuningJobConfig() const{ return m_hyperParameterTuningJobConfig; }
/**
* <p>The <a>HyperParameterTuningJobConfig</a> object that describes the tuning
* job, including the search strategy, the objective metric used to evaluate
* training jobs, ranges of parameters to search, and resource limits for the
* tuning job. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html">How
* Hyperparameter Tuning Works</a>.</p>
*/
inline bool HyperParameterTuningJobConfigHasBeenSet() const { return m_hyperParameterTuningJobConfigHasBeenSet; }
/**
* <p>The <a>HyperParameterTuningJobConfig</a> object that describes the tuning
* job, including the search strategy, the objective metric used to evaluate
* training jobs, ranges of parameters to search, and resource limits for the
* tuning job. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html">How
* Hyperparameter Tuning Works</a>.</p>
*/
inline void SetHyperParameterTuningJobConfig(const HyperParameterTuningJobConfig& value) { m_hyperParameterTuningJobConfigHasBeenSet = true; m_hyperParameterTuningJobConfig = value; }
/**
* <p>The <a>HyperParameterTuningJobConfig</a> object that describes the tuning
* job, including the search strategy, the objective metric used to evaluate
* training jobs, ranges of parameters to search, and resource limits for the
* tuning job. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html">How
* Hyperparameter Tuning Works</a>.</p>
*/
inline void SetHyperParameterTuningJobConfig(HyperParameterTuningJobConfig&& value) { m_hyperParameterTuningJobConfigHasBeenSet = true; m_hyperParameterTuningJobConfig = std::move(value); }
/**
* <p>The <a>HyperParameterTuningJobConfig</a> object that describes the tuning
* job, including the search strategy, the objective metric used to evaluate
* training jobs, ranges of parameters to search, and resource limits for the
* tuning job. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html">How
* Hyperparameter Tuning Works</a>.</p>
*/
inline CreateHyperParameterTuningJobRequest& WithHyperParameterTuningJobConfig(const HyperParameterTuningJobConfig& value) { SetHyperParameterTuningJobConfig(value); return *this;}
/**
* <p>The <a>HyperParameterTuningJobConfig</a> object that describes the tuning
* job, including the search strategy, the objective metric used to evaluate
* training jobs, ranges of parameters to search, and resource limits for the
* tuning job. For more information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html">How
* Hyperparameter Tuning Works</a>.</p>
*/
inline CreateHyperParameterTuningJobRequest& WithHyperParameterTuningJobConfig(HyperParameterTuningJobConfig&& value) { SetHyperParameterTuningJobConfig(std::move(value)); return *this;}
/**
* <p>The <a>HyperParameterTrainingJobDefinition</a> object that describes the
* training jobs that this tuning job launches, including static hyperparameters,
* input data configuration, output data configuration, resource configuration, and
* stopping condition.</p>
*/
inline const HyperParameterTrainingJobDefinition& GetTrainingJobDefinition() const{ return m_trainingJobDefinition; }
/**
* <p>The <a>HyperParameterTrainingJobDefinition</a> object that describes the
* training jobs that this tuning job launches, including static hyperparameters,
* input data configuration, output data configuration, resource configuration, and
* stopping condition.</p>
*/
inline bool TrainingJobDefinitionHasBeenSet() const { return m_trainingJobDefinitionHasBeenSet; }
/**
* <p>The <a>HyperParameterTrainingJobDefinition</a> object that describes the
* training jobs that this tuning job launches, including static hyperparameters,
* input data configuration, output data configuration, resource configuration, and
* stopping condition.</p>
*/
inline void SetTrainingJobDefinition(const HyperParameterTrainingJobDefinition& value) { m_trainingJobDefinitionHasBeenSet = true; m_trainingJobDefinition = value; }
/**
* <p>The <a>HyperParameterTrainingJobDefinition</a> object that describes the
* training jobs that this tuning job launches, including static hyperparameters,
* input data configuration, output data configuration, resource configuration, and
* stopping condition.</p>
*/
inline void SetTrainingJobDefinition(HyperParameterTrainingJobDefinition&& value) { m_trainingJobDefinitionHasBeenSet = true; m_trainingJobDefinition = std::move(value); }
/**
* <p>The <a>HyperParameterTrainingJobDefinition</a> object that describes the
* training jobs that this tuning job launches, including static hyperparameters,
* input data configuration, output data configuration, resource configuration, and
* stopping condition.</p>
*/
inline CreateHyperParameterTuningJobRequest& WithTrainingJobDefinition(const HyperParameterTrainingJobDefinition& value) { SetTrainingJobDefinition(value); return *this;}
/**
* <p>The <a>HyperParameterTrainingJobDefinition</a> object that describes the
* training jobs that this tuning job launches, including static hyperparameters,
* input data configuration, output data configuration, resource configuration, and
* stopping condition.</p>
*/
inline CreateHyperParameterTuningJobRequest& WithTrainingJobDefinition(HyperParameterTrainingJobDefinition&& value) { SetTrainingJobDefinition(std::move(value)); return *this;}
/**
* <p>A list of the <a>HyperParameterTrainingJobDefinition</a> objects launched for
* this tuning job.</p>
*/
inline const Aws::Vector<HyperParameterTrainingJobDefinition>& GetTrainingJobDefinitions() const{ return m_trainingJobDefinitions; }
/**
* <p>A list of the <a>HyperParameterTrainingJobDefinition</a> objects launched for
* this tuning job.</p>
*/
inline bool TrainingJobDefinitionsHasBeenSet() const { return m_trainingJobDefinitionsHasBeenSet; }
/**
* <p>A list of the <a>HyperParameterTrainingJobDefinition</a> objects launched for
* this tuning job.</p>
*/
inline void SetTrainingJobDefinitions(const Aws::Vector<HyperParameterTrainingJobDefinition>& value) { m_trainingJobDefinitionsHasBeenSet = true; m_trainingJobDefinitions = value; }
/**
* <p>A list of the <a>HyperParameterTrainingJobDefinition</a> objects launched for
* this tuning job.</p>
*/
inline void SetTrainingJobDefinitions(Aws::Vector<HyperParameterTrainingJobDefinition>&& value) { m_trainingJobDefinitionsHasBeenSet = true; m_trainingJobDefinitions = std::move(value); }
/**
* <p>A list of the <a>HyperParameterTrainingJobDefinition</a> objects launched for
* this tuning job.</p>
*/
inline CreateHyperParameterTuningJobRequest& WithTrainingJobDefinitions(const Aws::Vector<HyperParameterTrainingJobDefinition>& value) { SetTrainingJobDefinitions(value); return *this;}
/**
* <p>A list of the <a>HyperParameterTrainingJobDefinition</a> objects launched for
* this tuning job.</p>
*/
inline CreateHyperParameterTuningJobRequest& WithTrainingJobDefinitions(Aws::Vector<HyperParameterTrainingJobDefinition>&& value) { SetTrainingJobDefinitions(std::move(value)); return *this;}
/**
* <p>A list of the <a>HyperParameterTrainingJobDefinition</a> objects launched for
* this tuning job.</p>
*/
inline CreateHyperParameterTuningJobRequest& AddTrainingJobDefinitions(const HyperParameterTrainingJobDefinition& value) { m_trainingJobDefinitionsHasBeenSet = true; m_trainingJobDefinitions.push_back(value); return *this; }
/**
* <p>A list of the <a>HyperParameterTrainingJobDefinition</a> objects launched for
* this tuning job.</p>
*/
inline CreateHyperParameterTuningJobRequest& AddTrainingJobDefinitions(HyperParameterTrainingJobDefinition&& value) { m_trainingJobDefinitionsHasBeenSet = true; m_trainingJobDefinitions.push_back(std::move(value)); return *this; }
/**
* <p>Specifies the configuration for starting the hyperparameter tuning job using
* one or more previous tuning jobs as a starting point. The results of previous
* tuning jobs are used to inform which combinations of hyperparameters to search
* over in the new tuning job.</p> <p>All training jobs launched by the new
* hyperparameter tuning job are evaluated by using the objective metric. If you
* specify <code>IDENTICAL_DATA_AND_ALGORITHM</code> as the
* <code>WarmStartType</code> value for the warm start configuration, the training
* job that performs the best in the new tuning job is compared to the best
* training jobs from the parent tuning jobs. From these, the training job that
* performs the best as measured by the objective metric is returned as the overall
* best training job.</p> <p>All training jobs launched by parent
* hyperparameter tuning jobs and the new hyperparameter tuning jobs count against
* the limit of training jobs for the tuning job.</p>
*/
inline const HyperParameterTuningJobWarmStartConfig& GetWarmStartConfig() const{ return m_warmStartConfig; }
/**
* <p>Specifies the configuration for starting the hyperparameter tuning job using
* one or more previous tuning jobs as a starting point. The results of previous
* tuning jobs are used to inform which combinations of hyperparameters to search
* over in the new tuning job.</p> <p>All training jobs launched by the new
* hyperparameter tuning job are evaluated by using the objective metric. If you
* specify <code>IDENTICAL_DATA_AND_ALGORITHM</code> as the
* <code>WarmStartType</code> value for the warm start configuration, the training
* job that performs the best in the new tuning job is compared to the best
* training jobs from the parent tuning jobs. From these, the training job that
* performs the best as measured by the objective metric is returned as the overall
* best training job.</p> <p>All training jobs launched by parent
* hyperparameter tuning jobs and the new hyperparameter tuning jobs count against
* the limit of training jobs for the tuning job.</p>
*/
inline bool WarmStartConfigHasBeenSet() const { return m_warmStartConfigHasBeenSet; }
/**
* <p>Specifies the configuration for starting the hyperparameter tuning job using
* one or more previous tuning jobs as a starting point. The results of previous
* tuning jobs are used to inform which combinations of hyperparameters to search
* over in the new tuning job.</p> <p>All training jobs launched by the new
* hyperparameter tuning job are evaluated by using the objective metric. If you
* specify <code>IDENTICAL_DATA_AND_ALGORITHM</code> as the
* <code>WarmStartType</code> value for the warm start configuration, the training
* job that performs the best in the new tuning job is compared to the best
* training jobs from the parent tuning jobs. From these, the training job that
* performs the best as measured by the objective metric is returned as the overall
* best training job.</p> <p>All training jobs launched by parent
* hyperparameter tuning jobs and the new hyperparameter tuning jobs count against
* the limit of training jobs for the tuning job.</p>
*/
inline void SetWarmStartConfig(const HyperParameterTuningJobWarmStartConfig& value) { m_warmStartConfigHasBeenSet = true; m_warmStartConfig = value; }
/**
* <p>Specifies the configuration for starting the hyperparameter tuning job using
* one or more previous tuning jobs as a starting point. The results of previous
* tuning jobs are used to inform which combinations of hyperparameters to search
* over in the new tuning job.</p> <p>All training jobs launched by the new
* hyperparameter tuning job are evaluated by using the objective metric. If you
* specify <code>IDENTICAL_DATA_AND_ALGORITHM</code> as the
* <code>WarmStartType</code> value for the warm start configuration, the training
* job that performs the best in the new tuning job is compared to the best
* training jobs from the parent tuning jobs. From these, the training job that
* performs the best as measured by the objective metric is returned as the overall
* best training job.</p> <p>All training jobs launched by parent
* hyperparameter tuning jobs and the new hyperparameter tuning jobs count against
* the limit of training jobs for the tuning job.</p>
*/
inline void SetWarmStartConfig(HyperParameterTuningJobWarmStartConfig&& value) { m_warmStartConfigHasBeenSet = true; m_warmStartConfig = std::move(value); }
/**
* <p>Specifies the configuration for starting the hyperparameter tuning job using
* one or more previous tuning jobs as a starting point. The results of previous
* tuning jobs are used to inform which combinations of hyperparameters to search
* over in the new tuning job.</p> <p>All training jobs launched by the new
* hyperparameter tuning job are evaluated by using the objective metric. If you
* specify <code>IDENTICAL_DATA_AND_ALGORITHM</code> as the
* <code>WarmStartType</code> value for the warm start configuration, the training
* job that performs the best in the new tuning job is compared to the best
* training jobs from the parent tuning jobs. From these, the training job that
* performs the best as measured by the objective metric is returned as the overall
* best training job.</p> <p>All training jobs launched by parent
* hyperparameter tuning jobs and the new hyperparameter tuning jobs count against
* the limit of training jobs for the tuning job.</p>
*/
inline CreateHyperParameterTuningJobRequest& WithWarmStartConfig(const HyperParameterTuningJobWarmStartConfig& value) { SetWarmStartConfig(value); return *this;}
/**
* <p>Specifies the configuration for starting the hyperparameter tuning job using
* one or more previous tuning jobs as a starting point. The results of previous
* tuning jobs are used to inform which combinations of hyperparameters to search
* over in the new tuning job.</p> <p>All training jobs launched by the new
* hyperparameter tuning job are evaluated by using the objective metric. If you
* specify <code>IDENTICAL_DATA_AND_ALGORITHM</code> as the
* <code>WarmStartType</code> value for the warm start configuration, the training
* job that performs the best in the new tuning job is compared to the best
* training jobs from the parent tuning jobs. From these, the training job that
* performs the best as measured by the objective metric is returned as the overall
* best training job.</p> <p>All training jobs launched by parent
* hyperparameter tuning jobs and the new hyperparameter tuning jobs count against
* the limit of training jobs for the tuning job.</p>
*/
inline CreateHyperParameterTuningJobRequest& WithWarmStartConfig(HyperParameterTuningJobWarmStartConfig&& value) { SetWarmStartConfig(std::move(value)); return *this;}
/**
* <p>An array of key-value pairs. You can use tags to categorize your AWS
* resources in different ways, for example, by purpose, owner, or environment. For
* more information, see <a
* href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS
* Tagging Strategies</a>.</p> <p>Tags that you specify for the tuning job are also
* added to all training jobs that the tuning job launches.</p>
*/
inline const Aws::Vector<Tag>& GetTags() const{ return m_tags; }
/**
* <p>An array of key-value pairs. You can use tags to categorize your AWS
* resources in different ways, for example, by purpose, owner, or environment. For
* more information, see <a
* href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS
* Tagging Strategies</a>.</p> <p>Tags that you specify for the tuning job are also
* added to all training jobs that the tuning job launches.</p>
*/
inline bool TagsHasBeenSet() const { return m_tagsHasBeenSet; }
/**
* <p>An array of key-value pairs. You can use tags to categorize your AWS
* resources in different ways, for example, by purpose, owner, or environment. For
* more information, see <a
* href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS
* Tagging Strategies</a>.</p> <p>Tags that you specify for the tuning job are also
* added to all training jobs that the tuning job launches.</p>
*/
inline void SetTags(const Aws::Vector<Tag>& value) { m_tagsHasBeenSet = true; m_tags = value; }
/**
* <p>An array of key-value pairs. You can use tags to categorize your AWS
* resources in different ways, for example, by purpose, owner, or environment. For
* more information, see <a
* href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS
* Tagging Strategies</a>.</p> <p>Tags that you specify for the tuning job are also
* added to all training jobs that the tuning job launches.</p>
*/
inline void SetTags(Aws::Vector<Tag>&& value) { m_tagsHasBeenSet = true; m_tags = std::move(value); }
/**
* <p>An array of key-value pairs. You can use tags to categorize your AWS
* resources in different ways, for example, by purpose, owner, or environment. For
* more information, see <a
* href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS
* Tagging Strategies</a>.</p> <p>Tags that you specify for the tuning job are also
* added to all training jobs that the tuning job launches.</p>
*/
inline CreateHyperParameterTuningJobRequest& WithTags(const Aws::Vector<Tag>& value) { SetTags(value); return *this;}
/**
* <p>An array of key-value pairs. You can use tags to categorize your AWS
* resources in different ways, for example, by purpose, owner, or environment. For
* more information, see <a
* href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS
* Tagging Strategies</a>.</p> <p>Tags that you specify for the tuning job are also
* added to all training jobs that the tuning job launches.</p>
*/
inline CreateHyperParameterTuningJobRequest& WithTags(Aws::Vector<Tag>&& value) { SetTags(std::move(value)); return *this;}
/**
* <p>An array of key-value pairs. You can use tags to categorize your AWS
* resources in different ways, for example, by purpose, owner, or environment. For
* more information, see <a
* href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS
* Tagging Strategies</a>.</p> <p>Tags that you specify for the tuning job are also
* added to all training jobs that the tuning job launches.</p>
*/
inline CreateHyperParameterTuningJobRequest& AddTags(const Tag& value) { m_tagsHasBeenSet = true; m_tags.push_back(value); return *this; }
/**
* <p>An array of key-value pairs. You can use tags to categorize your AWS
* resources in different ways, for example, by purpose, owner, or environment. For
* more information, see <a
* href="https://aws.amazon.com/answers/account-management/aws-tagging-strategies/">AWS
* Tagging Strategies</a>.</p> <p>Tags that you specify for the tuning job are also
* added to all training jobs that the tuning job launches.</p>
*/
inline CreateHyperParameterTuningJobRequest& AddTags(Tag&& value) { m_tagsHasBeenSet = true; m_tags.push_back(std::move(value)); return *this; }
private:
Aws::String m_hyperParameterTuningJobName;
bool m_hyperParameterTuningJobNameHasBeenSet;
HyperParameterTuningJobConfig m_hyperParameterTuningJobConfig;
bool m_hyperParameterTuningJobConfigHasBeenSet;
HyperParameterTrainingJobDefinition m_trainingJobDefinition;
bool m_trainingJobDefinitionHasBeenSet;
Aws::Vector<HyperParameterTrainingJobDefinition> m_trainingJobDefinitions;
bool m_trainingJobDefinitionsHasBeenSet;
HyperParameterTuningJobWarmStartConfig m_warmStartConfig;
bool m_warmStartConfigHasBeenSet;
Aws::Vector<Tag> m_tags;
bool m_tagsHasBeenSet;
};
} // namespace Model
} // namespace SageMaker
} // namespace Aws