306 lines
15 KiB
C++
306 lines
15 KiB
C++
/**
|
|
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
* SPDX-License-Identifier: Apache-2.0.
|
|
*/
|
|
|
|
#pragma once
|
|
#include <aws/sagemaker/SageMaker_EXPORTS.h>
|
|
#include <aws/core/utils/memory/stl/AWSString.h>
|
|
#include <aws/sagemaker/model/HyperParameterScalingType.h>
|
|
#include <utility>
|
|
|
|
namespace Aws
|
|
{
|
|
namespace Utils
|
|
{
|
|
namespace Json
|
|
{
|
|
class JsonValue;
|
|
class JsonView;
|
|
} // namespace Json
|
|
} // namespace Utils
|
|
namespace SageMaker
|
|
{
|
|
namespace Model
|
|
{
|
|
|
|
/**
|
|
* <p>A list of continuous hyperparameters to tune.</p><p><h3>See Also:</h3> <a
|
|
* href="http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContinuousParameterRange">AWS
|
|
* API Reference</a></p>
|
|
*/
|
|
class AWS_SAGEMAKER_API ContinuousParameterRange
|
|
{
|
|
public:
|
|
ContinuousParameterRange();
|
|
ContinuousParameterRange(Aws::Utils::Json::JsonView jsonValue);
|
|
ContinuousParameterRange& operator=(Aws::Utils::Json::JsonView jsonValue);
|
|
Aws::Utils::Json::JsonValue Jsonize() const;
|
|
|
|
|
|
/**
|
|
* <p>The name of the continuous hyperparameter to tune.</p>
|
|
*/
|
|
inline const Aws::String& GetName() const{ return m_name; }
|
|
|
|
/**
|
|
* <p>The name of the continuous hyperparameter to tune.</p>
|
|
*/
|
|
inline bool NameHasBeenSet() const { return m_nameHasBeenSet; }
|
|
|
|
/**
|
|
* <p>The name of the continuous hyperparameter to tune.</p>
|
|
*/
|
|
inline void SetName(const Aws::String& value) { m_nameHasBeenSet = true; m_name = value; }
|
|
|
|
/**
|
|
* <p>The name of the continuous hyperparameter to tune.</p>
|
|
*/
|
|
inline void SetName(Aws::String&& value) { m_nameHasBeenSet = true; m_name = std::move(value); }
|
|
|
|
/**
|
|
* <p>The name of the continuous hyperparameter to tune.</p>
|
|
*/
|
|
inline void SetName(const char* value) { m_nameHasBeenSet = true; m_name.assign(value); }
|
|
|
|
/**
|
|
* <p>The name of the continuous hyperparameter to tune.</p>
|
|
*/
|
|
inline ContinuousParameterRange& WithName(const Aws::String& value) { SetName(value); return *this;}
|
|
|
|
/**
|
|
* <p>The name of the continuous hyperparameter to tune.</p>
|
|
*/
|
|
inline ContinuousParameterRange& WithName(Aws::String&& value) { SetName(std::move(value)); return *this;}
|
|
|
|
/**
|
|
* <p>The name of the continuous hyperparameter to tune.</p>
|
|
*/
|
|
inline ContinuousParameterRange& WithName(const char* value) { SetName(value); return *this;}
|
|
|
|
|
|
/**
|
|
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between this value and <code>MaxValue</code>for tuning.</p>
|
|
*/
|
|
inline const Aws::String& GetMinValue() const{ return m_minValue; }
|
|
|
|
/**
|
|
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between this value and <code>MaxValue</code>for tuning.</p>
|
|
*/
|
|
inline bool MinValueHasBeenSet() const { return m_minValueHasBeenSet; }
|
|
|
|
/**
|
|
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between this value and <code>MaxValue</code>for tuning.</p>
|
|
*/
|
|
inline void SetMinValue(const Aws::String& value) { m_minValueHasBeenSet = true; m_minValue = value; }
|
|
|
|
/**
|
|
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between this value and <code>MaxValue</code>for tuning.</p>
|
|
*/
|
|
inline void SetMinValue(Aws::String&& value) { m_minValueHasBeenSet = true; m_minValue = std::move(value); }
|
|
|
|
/**
|
|
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between this value and <code>MaxValue</code>for tuning.</p>
|
|
*/
|
|
inline void SetMinValue(const char* value) { m_minValueHasBeenSet = true; m_minValue.assign(value); }
|
|
|
|
/**
|
|
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between this value and <code>MaxValue</code>for tuning.</p>
|
|
*/
|
|
inline ContinuousParameterRange& WithMinValue(const Aws::String& value) { SetMinValue(value); return *this;}
|
|
|
|
/**
|
|
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between this value and <code>MaxValue</code>for tuning.</p>
|
|
*/
|
|
inline ContinuousParameterRange& WithMinValue(Aws::String&& value) { SetMinValue(std::move(value)); return *this;}
|
|
|
|
/**
|
|
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between this value and <code>MaxValue</code>for tuning.</p>
|
|
*/
|
|
inline ContinuousParameterRange& WithMinValue(const char* value) { SetMinValue(value); return *this;}
|
|
|
|
|
|
/**
|
|
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between <code>MinValue</code> value and this value for tuning.</p>
|
|
*/
|
|
inline const Aws::String& GetMaxValue() const{ return m_maxValue; }
|
|
|
|
/**
|
|
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between <code>MinValue</code> value and this value for tuning.</p>
|
|
*/
|
|
inline bool MaxValueHasBeenSet() const { return m_maxValueHasBeenSet; }
|
|
|
|
/**
|
|
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between <code>MinValue</code> value and this value for tuning.</p>
|
|
*/
|
|
inline void SetMaxValue(const Aws::String& value) { m_maxValueHasBeenSet = true; m_maxValue = value; }
|
|
|
|
/**
|
|
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between <code>MinValue</code> value and this value for tuning.</p>
|
|
*/
|
|
inline void SetMaxValue(Aws::String&& value) { m_maxValueHasBeenSet = true; m_maxValue = std::move(value); }
|
|
|
|
/**
|
|
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between <code>MinValue</code> value and this value for tuning.</p>
|
|
*/
|
|
inline void SetMaxValue(const char* value) { m_maxValueHasBeenSet = true; m_maxValue.assign(value); }
|
|
|
|
/**
|
|
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between <code>MinValue</code> value and this value for tuning.</p>
|
|
*/
|
|
inline ContinuousParameterRange& WithMaxValue(const Aws::String& value) { SetMaxValue(value); return *this;}
|
|
|
|
/**
|
|
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between <code>MinValue</code> value and this value for tuning.</p>
|
|
*/
|
|
inline ContinuousParameterRange& WithMaxValue(Aws::String&& value) { SetMaxValue(std::move(value)); return *this;}
|
|
|
|
/**
|
|
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
|
|
* values between <code>MinValue</code> value and this value for tuning.</p>
|
|
*/
|
|
inline ContinuousParameterRange& WithMaxValue(const char* value) { SetMaxValue(value); return *this;}
|
|
|
|
|
|
/**
|
|
* <p>The scale that hyperparameter tuning uses to search the hyperparameter range.
|
|
* For information about choosing a hyperparameter scale, see <a
|
|
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter
|
|
* Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon
|
|
* SageMaker hyperparameter tuning chooses the best scale for the
|
|
* hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches
|
|
* the values in the hyperparameter range by using a linear scale.</p> </dd>
|
|
* <dt>Logarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in the
|
|
* hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling
|
|
* works only for ranges that have only values greater than 0.</p> </dd>
|
|
* <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in
|
|
* the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse
|
|
* logarithmic scaling works only for ranges that are entirely within the range
|
|
* 0<=x<1.0.</p> </dd> </dl>
|
|
*/
|
|
inline const HyperParameterScalingType& GetScalingType() const{ return m_scalingType; }
|
|
|
|
/**
|
|
* <p>The scale that hyperparameter tuning uses to search the hyperparameter range.
|
|
* For information about choosing a hyperparameter scale, see <a
|
|
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter
|
|
* Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon
|
|
* SageMaker hyperparameter tuning chooses the best scale for the
|
|
* hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches
|
|
* the values in the hyperparameter range by using a linear scale.</p> </dd>
|
|
* <dt>Logarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in the
|
|
* hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling
|
|
* works only for ranges that have only values greater than 0.</p> </dd>
|
|
* <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in
|
|
* the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse
|
|
* logarithmic scaling works only for ranges that are entirely within the range
|
|
* 0<=x<1.0.</p> </dd> </dl>
|
|
*/
|
|
inline bool ScalingTypeHasBeenSet() const { return m_scalingTypeHasBeenSet; }
|
|
|
|
/**
|
|
* <p>The scale that hyperparameter tuning uses to search the hyperparameter range.
|
|
* For information about choosing a hyperparameter scale, see <a
|
|
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter
|
|
* Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon
|
|
* SageMaker hyperparameter tuning chooses the best scale for the
|
|
* hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches
|
|
* the values in the hyperparameter range by using a linear scale.</p> </dd>
|
|
* <dt>Logarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in the
|
|
* hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling
|
|
* works only for ranges that have only values greater than 0.</p> </dd>
|
|
* <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in
|
|
* the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse
|
|
* logarithmic scaling works only for ranges that are entirely within the range
|
|
* 0<=x<1.0.</p> </dd> </dl>
|
|
*/
|
|
inline void SetScalingType(const HyperParameterScalingType& value) { m_scalingTypeHasBeenSet = true; m_scalingType = value; }
|
|
|
|
/**
|
|
* <p>The scale that hyperparameter tuning uses to search the hyperparameter range.
|
|
* For information about choosing a hyperparameter scale, see <a
|
|
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter
|
|
* Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon
|
|
* SageMaker hyperparameter tuning chooses the best scale for the
|
|
* hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches
|
|
* the values in the hyperparameter range by using a linear scale.</p> </dd>
|
|
* <dt>Logarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in the
|
|
* hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling
|
|
* works only for ranges that have only values greater than 0.</p> </dd>
|
|
* <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in
|
|
* the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse
|
|
* logarithmic scaling works only for ranges that are entirely within the range
|
|
* 0<=x<1.0.</p> </dd> </dl>
|
|
*/
|
|
inline void SetScalingType(HyperParameterScalingType&& value) { m_scalingTypeHasBeenSet = true; m_scalingType = std::move(value); }
|
|
|
|
/**
|
|
* <p>The scale that hyperparameter tuning uses to search the hyperparameter range.
|
|
* For information about choosing a hyperparameter scale, see <a
|
|
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter
|
|
* Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon
|
|
* SageMaker hyperparameter tuning chooses the best scale for the
|
|
* hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches
|
|
* the values in the hyperparameter range by using a linear scale.</p> </dd>
|
|
* <dt>Logarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in the
|
|
* hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling
|
|
* works only for ranges that have only values greater than 0.</p> </dd>
|
|
* <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in
|
|
* the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse
|
|
* logarithmic scaling works only for ranges that are entirely within the range
|
|
* 0<=x<1.0.</p> </dd> </dl>
|
|
*/
|
|
inline ContinuousParameterRange& WithScalingType(const HyperParameterScalingType& value) { SetScalingType(value); return *this;}
|
|
|
|
/**
|
|
* <p>The scale that hyperparameter tuning uses to search the hyperparameter range.
|
|
* For information about choosing a hyperparameter scale, see <a
|
|
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter
|
|
* Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon
|
|
* SageMaker hyperparameter tuning chooses the best scale for the
|
|
* hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches
|
|
* the values in the hyperparameter range by using a linear scale.</p> </dd>
|
|
* <dt>Logarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in the
|
|
* hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling
|
|
* works only for ranges that have only values greater than 0.</p> </dd>
|
|
* <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in
|
|
* the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse
|
|
* logarithmic scaling works only for ranges that are entirely within the range
|
|
* 0<=x<1.0.</p> </dd> </dl>
|
|
*/
|
|
inline ContinuousParameterRange& WithScalingType(HyperParameterScalingType&& value) { SetScalingType(std::move(value)); return *this;}
|
|
|
|
private:
|
|
|
|
Aws::String m_name;
|
|
bool m_nameHasBeenSet;
|
|
|
|
Aws::String m_minValue;
|
|
bool m_minValueHasBeenSet;
|
|
|
|
Aws::String m_maxValue;
|
|
bool m_maxValueHasBeenSet;
|
|
|
|
HyperParameterScalingType m_scalingType;
|
|
bool m_scalingTypeHasBeenSet;
|
|
};
|
|
|
|
} // namespace Model
|
|
} // namespace SageMaker
|
|
} // namespace Aws
|