This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
pxz-hos-client-cpp-module/support/aws-sdk-cpp-master/aws-cpp-sdk-sagemaker/include/aws/sagemaker/model/ContinuousParameterRange.h

306 lines
15 KiB
C++

/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include <aws/sagemaker/SageMaker_EXPORTS.h>
#include <aws/core/utils/memory/stl/AWSString.h>
#include <aws/sagemaker/model/HyperParameterScalingType.h>
#include <utility>
namespace Aws
{
namespace Utils
{
namespace Json
{
class JsonValue;
class JsonView;
} // namespace Json
} // namespace Utils
namespace SageMaker
{
namespace Model
{
/**
* <p>A list of continuous hyperparameters to tune.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/ContinuousParameterRange">AWS
* API Reference</a></p>
*/
class AWS_SAGEMAKER_API ContinuousParameterRange
{
public:
ContinuousParameterRange();
ContinuousParameterRange(Aws::Utils::Json::JsonView jsonValue);
ContinuousParameterRange& operator=(Aws::Utils::Json::JsonView jsonValue);
Aws::Utils::Json::JsonValue Jsonize() const;
/**
* <p>The name of the continuous hyperparameter to tune.</p>
*/
inline const Aws::String& GetName() const{ return m_name; }
/**
* <p>The name of the continuous hyperparameter to tune.</p>
*/
inline bool NameHasBeenSet() const { return m_nameHasBeenSet; }
/**
* <p>The name of the continuous hyperparameter to tune.</p>
*/
inline void SetName(const Aws::String& value) { m_nameHasBeenSet = true; m_name = value; }
/**
* <p>The name of the continuous hyperparameter to tune.</p>
*/
inline void SetName(Aws::String&& value) { m_nameHasBeenSet = true; m_name = std::move(value); }
/**
* <p>The name of the continuous hyperparameter to tune.</p>
*/
inline void SetName(const char* value) { m_nameHasBeenSet = true; m_name.assign(value); }
/**
* <p>The name of the continuous hyperparameter to tune.</p>
*/
inline ContinuousParameterRange& WithName(const Aws::String& value) { SetName(value); return *this;}
/**
* <p>The name of the continuous hyperparameter to tune.</p>
*/
inline ContinuousParameterRange& WithName(Aws::String&& value) { SetName(std::move(value)); return *this;}
/**
* <p>The name of the continuous hyperparameter to tune.</p>
*/
inline ContinuousParameterRange& WithName(const char* value) { SetName(value); return *this;}
/**
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
* values between this value and <code>MaxValue</code>for tuning.</p>
*/
inline const Aws::String& GetMinValue() const{ return m_minValue; }
/**
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
* values between this value and <code>MaxValue</code>for tuning.</p>
*/
inline bool MinValueHasBeenSet() const { return m_minValueHasBeenSet; }
/**
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
* values between this value and <code>MaxValue</code>for tuning.</p>
*/
inline void SetMinValue(const Aws::String& value) { m_minValueHasBeenSet = true; m_minValue = value; }
/**
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
* values between this value and <code>MaxValue</code>for tuning.</p>
*/
inline void SetMinValue(Aws::String&& value) { m_minValueHasBeenSet = true; m_minValue = std::move(value); }
/**
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
* values between this value and <code>MaxValue</code>for tuning.</p>
*/
inline void SetMinValue(const char* value) { m_minValueHasBeenSet = true; m_minValue.assign(value); }
/**
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
* values between this value and <code>MaxValue</code>for tuning.</p>
*/
inline ContinuousParameterRange& WithMinValue(const Aws::String& value) { SetMinValue(value); return *this;}
/**
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
* values between this value and <code>MaxValue</code>for tuning.</p>
*/
inline ContinuousParameterRange& WithMinValue(Aws::String&& value) { SetMinValue(std::move(value)); return *this;}
/**
* <p>The minimum value for the hyperparameter. The tuning job uses floating-point
* values between this value and <code>MaxValue</code>for tuning.</p>
*/
inline ContinuousParameterRange& WithMinValue(const char* value) { SetMinValue(value); return *this;}
/**
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
* values between <code>MinValue</code> value and this value for tuning.</p>
*/
inline const Aws::String& GetMaxValue() const{ return m_maxValue; }
/**
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
* values between <code>MinValue</code> value and this value for tuning.</p>
*/
inline bool MaxValueHasBeenSet() const { return m_maxValueHasBeenSet; }
/**
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
* values between <code>MinValue</code> value and this value for tuning.</p>
*/
inline void SetMaxValue(const Aws::String& value) { m_maxValueHasBeenSet = true; m_maxValue = value; }
/**
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
* values between <code>MinValue</code> value and this value for tuning.</p>
*/
inline void SetMaxValue(Aws::String&& value) { m_maxValueHasBeenSet = true; m_maxValue = std::move(value); }
/**
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
* values between <code>MinValue</code> value and this value for tuning.</p>
*/
inline void SetMaxValue(const char* value) { m_maxValueHasBeenSet = true; m_maxValue.assign(value); }
/**
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
* values between <code>MinValue</code> value and this value for tuning.</p>
*/
inline ContinuousParameterRange& WithMaxValue(const Aws::String& value) { SetMaxValue(value); return *this;}
/**
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
* values between <code>MinValue</code> value and this value for tuning.</p>
*/
inline ContinuousParameterRange& WithMaxValue(Aws::String&& value) { SetMaxValue(std::move(value)); return *this;}
/**
* <p>The maximum value for the hyperparameter. The tuning job uses floating-point
* values between <code>MinValue</code> value and this value for tuning.</p>
*/
inline ContinuousParameterRange& WithMaxValue(const char* value) { SetMaxValue(value); return *this;}
/**
* <p>The scale that hyperparameter tuning uses to search the hyperparameter range.
* For information about choosing a hyperparameter scale, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter
* Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon
* SageMaker hyperparameter tuning chooses the best scale for the
* hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches
* the values in the hyperparameter range by using a linear scale.</p> </dd>
* <dt>Logarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in the
* hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling
* works only for ranges that have only values greater than 0.</p> </dd>
* <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in
* the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse
* logarithmic scaling works only for ranges that are entirely within the range
* 0&lt;=x&lt;1.0.</p> </dd> </dl>
*/
inline const HyperParameterScalingType& GetScalingType() const{ return m_scalingType; }
/**
* <p>The scale that hyperparameter tuning uses to search the hyperparameter range.
* For information about choosing a hyperparameter scale, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter
* Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon
* SageMaker hyperparameter tuning chooses the best scale for the
* hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches
* the values in the hyperparameter range by using a linear scale.</p> </dd>
* <dt>Logarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in the
* hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling
* works only for ranges that have only values greater than 0.</p> </dd>
* <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in
* the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse
* logarithmic scaling works only for ranges that are entirely within the range
* 0&lt;=x&lt;1.0.</p> </dd> </dl>
*/
inline bool ScalingTypeHasBeenSet() const { return m_scalingTypeHasBeenSet; }
/**
* <p>The scale that hyperparameter tuning uses to search the hyperparameter range.
* For information about choosing a hyperparameter scale, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter
* Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon
* SageMaker hyperparameter tuning chooses the best scale for the
* hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches
* the values in the hyperparameter range by using a linear scale.</p> </dd>
* <dt>Logarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in the
* hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling
* works only for ranges that have only values greater than 0.</p> </dd>
* <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in
* the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse
* logarithmic scaling works only for ranges that are entirely within the range
* 0&lt;=x&lt;1.0.</p> </dd> </dl>
*/
inline void SetScalingType(const HyperParameterScalingType& value) { m_scalingTypeHasBeenSet = true; m_scalingType = value; }
/**
* <p>The scale that hyperparameter tuning uses to search the hyperparameter range.
* For information about choosing a hyperparameter scale, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter
* Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon
* SageMaker hyperparameter tuning chooses the best scale for the
* hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches
* the values in the hyperparameter range by using a linear scale.</p> </dd>
* <dt>Logarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in the
* hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling
* works only for ranges that have only values greater than 0.</p> </dd>
* <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in
* the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse
* logarithmic scaling works only for ranges that are entirely within the range
* 0&lt;=x&lt;1.0.</p> </dd> </dl>
*/
inline void SetScalingType(HyperParameterScalingType&& value) { m_scalingTypeHasBeenSet = true; m_scalingType = std::move(value); }
/**
* <p>The scale that hyperparameter tuning uses to search the hyperparameter range.
* For information about choosing a hyperparameter scale, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter
* Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon
* SageMaker hyperparameter tuning chooses the best scale for the
* hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches
* the values in the hyperparameter range by using a linear scale.</p> </dd>
* <dt>Logarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in the
* hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling
* works only for ranges that have only values greater than 0.</p> </dd>
* <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in
* the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse
* logarithmic scaling works only for ranges that are entirely within the range
* 0&lt;=x&lt;1.0.</p> </dd> </dl>
*/
inline ContinuousParameterRange& WithScalingType(const HyperParameterScalingType& value) { SetScalingType(value); return *this;}
/**
* <p>The scale that hyperparameter tuning uses to search the hyperparameter range.
* For information about choosing a hyperparameter scale, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-define-ranges.html#scaling-type">Hyperparameter
* Scaling</a>. One of the following values:</p> <dl> <dt>Auto</dt> <dd> <p>Amazon
* SageMaker hyperparameter tuning chooses the best scale for the
* hyperparameter.</p> </dd> <dt>Linear</dt> <dd> <p>Hyperparameter tuning searches
* the values in the hyperparameter range by using a linear scale.</p> </dd>
* <dt>Logarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in the
* hyperparameter range by using a logarithmic scale.</p> <p>Logarithmic scaling
* works only for ranges that have only values greater than 0.</p> </dd>
* <dt>ReverseLogarithmic</dt> <dd> <p>Hyperparameter tuning searches the values in
* the hyperparameter range by using a reverse logarithmic scale.</p> <p>Reverse
* logarithmic scaling works only for ranges that are entirely within the range
* 0&lt;=x&lt;1.0.</p> </dd> </dl>
*/
inline ContinuousParameterRange& WithScalingType(HyperParameterScalingType&& value) { SetScalingType(std::move(value)); return *this;}
private:
Aws::String m_name;
bool m_nameHasBeenSet;
Aws::String m_minValue;
bool m_minValueHasBeenSet;
Aws::String m_maxValue;
bool m_maxValueHasBeenSet;
HyperParameterScalingType m_scalingType;
bool m_scalingTypeHasBeenSet;
};
} // namespace Model
} // namespace SageMaker
} // namespace Aws