This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
pxz-hos-client-cpp-module/support/aws-sdk-cpp-master/aws-cpp-sdk-rekognition/include/aws/rekognition/RekognitionClient.h

3695 lines
280 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include <aws/rekognition/Rekognition_EXPORTS.h>
#include <aws/rekognition/RekognitionErrors.h>
#include <aws/core/client/AWSError.h>
#include <aws/core/client/ClientConfiguration.h>
#include <aws/core/client/AWSClient.h>
#include <aws/core/utils/memory/stl/AWSString.h>
#include <aws/core/utils/json/JsonSerializer.h>
#include <aws/rekognition/model/CompareFacesResult.h>
#include <aws/rekognition/model/CreateCollectionResult.h>
#include <aws/rekognition/model/CreateProjectResult.h>
#include <aws/rekognition/model/CreateProjectVersionResult.h>
#include <aws/rekognition/model/CreateStreamProcessorResult.h>
#include <aws/rekognition/model/DeleteCollectionResult.h>
#include <aws/rekognition/model/DeleteFacesResult.h>
#include <aws/rekognition/model/DeleteProjectResult.h>
#include <aws/rekognition/model/DeleteProjectVersionResult.h>
#include <aws/rekognition/model/DeleteStreamProcessorResult.h>
#include <aws/rekognition/model/DescribeCollectionResult.h>
#include <aws/rekognition/model/DescribeProjectVersionsResult.h>
#include <aws/rekognition/model/DescribeProjectsResult.h>
#include <aws/rekognition/model/DescribeStreamProcessorResult.h>
#include <aws/rekognition/model/DetectCustomLabelsResult.h>
#include <aws/rekognition/model/DetectFacesResult.h>
#include <aws/rekognition/model/DetectLabelsResult.h>
#include <aws/rekognition/model/DetectModerationLabelsResult.h>
#include <aws/rekognition/model/DetectTextResult.h>
#include <aws/rekognition/model/GetCelebrityInfoResult.h>
#include <aws/rekognition/model/GetCelebrityRecognitionResult.h>
#include <aws/rekognition/model/GetContentModerationResult.h>
#include <aws/rekognition/model/GetFaceDetectionResult.h>
#include <aws/rekognition/model/GetFaceSearchResult.h>
#include <aws/rekognition/model/GetLabelDetectionResult.h>
#include <aws/rekognition/model/GetPersonTrackingResult.h>
#include <aws/rekognition/model/GetSegmentDetectionResult.h>
#include <aws/rekognition/model/GetTextDetectionResult.h>
#include <aws/rekognition/model/IndexFacesResult.h>
#include <aws/rekognition/model/ListCollectionsResult.h>
#include <aws/rekognition/model/ListFacesResult.h>
#include <aws/rekognition/model/ListStreamProcessorsResult.h>
#include <aws/rekognition/model/RecognizeCelebritiesResult.h>
#include <aws/rekognition/model/SearchFacesResult.h>
#include <aws/rekognition/model/SearchFacesByImageResult.h>
#include <aws/rekognition/model/StartCelebrityRecognitionResult.h>
#include <aws/rekognition/model/StartContentModerationResult.h>
#include <aws/rekognition/model/StartFaceDetectionResult.h>
#include <aws/rekognition/model/StartFaceSearchResult.h>
#include <aws/rekognition/model/StartLabelDetectionResult.h>
#include <aws/rekognition/model/StartPersonTrackingResult.h>
#include <aws/rekognition/model/StartProjectVersionResult.h>
#include <aws/rekognition/model/StartSegmentDetectionResult.h>
#include <aws/rekognition/model/StartStreamProcessorResult.h>
#include <aws/rekognition/model/StartTextDetectionResult.h>
#include <aws/rekognition/model/StopProjectVersionResult.h>
#include <aws/rekognition/model/StopStreamProcessorResult.h>
#include <aws/core/client/AsyncCallerContext.h>
#include <aws/core/http/HttpTypes.h>
#include <future>
#include <functional>
namespace Aws
{
namespace Http
{
class HttpClient;
class HttpClientFactory;
} // namespace Http
namespace Utils
{
template< typename R, typename E> class Outcome;
namespace Threading
{
class Executor;
} // namespace Threading
} // namespace Utils
namespace Auth
{
class AWSCredentials;
class AWSCredentialsProvider;
} // namespace Auth
namespace Client
{
class RetryStrategy;
} // namespace Client
namespace Rekognition
{
namespace Model
{
class CompareFacesRequest;
class CreateCollectionRequest;
class CreateProjectRequest;
class CreateProjectVersionRequest;
class CreateStreamProcessorRequest;
class DeleteCollectionRequest;
class DeleteFacesRequest;
class DeleteProjectRequest;
class DeleteProjectVersionRequest;
class DeleteStreamProcessorRequest;
class DescribeCollectionRequest;
class DescribeProjectVersionsRequest;
class DescribeProjectsRequest;
class DescribeStreamProcessorRequest;
class DetectCustomLabelsRequest;
class DetectFacesRequest;
class DetectLabelsRequest;
class DetectModerationLabelsRequest;
class DetectTextRequest;
class GetCelebrityInfoRequest;
class GetCelebrityRecognitionRequest;
class GetContentModerationRequest;
class GetFaceDetectionRequest;
class GetFaceSearchRequest;
class GetLabelDetectionRequest;
class GetPersonTrackingRequest;
class GetSegmentDetectionRequest;
class GetTextDetectionRequest;
class IndexFacesRequest;
class ListCollectionsRequest;
class ListFacesRequest;
class ListStreamProcessorsRequest;
class RecognizeCelebritiesRequest;
class SearchFacesRequest;
class SearchFacesByImageRequest;
class StartCelebrityRecognitionRequest;
class StartContentModerationRequest;
class StartFaceDetectionRequest;
class StartFaceSearchRequest;
class StartLabelDetectionRequest;
class StartPersonTrackingRequest;
class StartProjectVersionRequest;
class StartSegmentDetectionRequest;
class StartStreamProcessorRequest;
class StartTextDetectionRequest;
class StopProjectVersionRequest;
class StopStreamProcessorRequest;
typedef Aws::Utils::Outcome<CompareFacesResult, RekognitionError> CompareFacesOutcome;
typedef Aws::Utils::Outcome<CreateCollectionResult, RekognitionError> CreateCollectionOutcome;
typedef Aws::Utils::Outcome<CreateProjectResult, RekognitionError> CreateProjectOutcome;
typedef Aws::Utils::Outcome<CreateProjectVersionResult, RekognitionError> CreateProjectVersionOutcome;
typedef Aws::Utils::Outcome<CreateStreamProcessorResult, RekognitionError> CreateStreamProcessorOutcome;
typedef Aws::Utils::Outcome<DeleteCollectionResult, RekognitionError> DeleteCollectionOutcome;
typedef Aws::Utils::Outcome<DeleteFacesResult, RekognitionError> DeleteFacesOutcome;
typedef Aws::Utils::Outcome<DeleteProjectResult, RekognitionError> DeleteProjectOutcome;
typedef Aws::Utils::Outcome<DeleteProjectVersionResult, RekognitionError> DeleteProjectVersionOutcome;
typedef Aws::Utils::Outcome<DeleteStreamProcessorResult, RekognitionError> DeleteStreamProcessorOutcome;
typedef Aws::Utils::Outcome<DescribeCollectionResult, RekognitionError> DescribeCollectionOutcome;
typedef Aws::Utils::Outcome<DescribeProjectVersionsResult, RekognitionError> DescribeProjectVersionsOutcome;
typedef Aws::Utils::Outcome<DescribeProjectsResult, RekognitionError> DescribeProjectsOutcome;
typedef Aws::Utils::Outcome<DescribeStreamProcessorResult, RekognitionError> DescribeStreamProcessorOutcome;
typedef Aws::Utils::Outcome<DetectCustomLabelsResult, RekognitionError> DetectCustomLabelsOutcome;
typedef Aws::Utils::Outcome<DetectFacesResult, RekognitionError> DetectFacesOutcome;
typedef Aws::Utils::Outcome<DetectLabelsResult, RekognitionError> DetectLabelsOutcome;
typedef Aws::Utils::Outcome<DetectModerationLabelsResult, RekognitionError> DetectModerationLabelsOutcome;
typedef Aws::Utils::Outcome<DetectTextResult, RekognitionError> DetectTextOutcome;
typedef Aws::Utils::Outcome<GetCelebrityInfoResult, RekognitionError> GetCelebrityInfoOutcome;
typedef Aws::Utils::Outcome<GetCelebrityRecognitionResult, RekognitionError> GetCelebrityRecognitionOutcome;
typedef Aws::Utils::Outcome<GetContentModerationResult, RekognitionError> GetContentModerationOutcome;
typedef Aws::Utils::Outcome<GetFaceDetectionResult, RekognitionError> GetFaceDetectionOutcome;
typedef Aws::Utils::Outcome<GetFaceSearchResult, RekognitionError> GetFaceSearchOutcome;
typedef Aws::Utils::Outcome<GetLabelDetectionResult, RekognitionError> GetLabelDetectionOutcome;
typedef Aws::Utils::Outcome<GetPersonTrackingResult, RekognitionError> GetPersonTrackingOutcome;
typedef Aws::Utils::Outcome<GetSegmentDetectionResult, RekognitionError> GetSegmentDetectionOutcome;
typedef Aws::Utils::Outcome<GetTextDetectionResult, RekognitionError> GetTextDetectionOutcome;
typedef Aws::Utils::Outcome<IndexFacesResult, RekognitionError> IndexFacesOutcome;
typedef Aws::Utils::Outcome<ListCollectionsResult, RekognitionError> ListCollectionsOutcome;
typedef Aws::Utils::Outcome<ListFacesResult, RekognitionError> ListFacesOutcome;
typedef Aws::Utils::Outcome<ListStreamProcessorsResult, RekognitionError> ListStreamProcessorsOutcome;
typedef Aws::Utils::Outcome<RecognizeCelebritiesResult, RekognitionError> RecognizeCelebritiesOutcome;
typedef Aws::Utils::Outcome<SearchFacesResult, RekognitionError> SearchFacesOutcome;
typedef Aws::Utils::Outcome<SearchFacesByImageResult, RekognitionError> SearchFacesByImageOutcome;
typedef Aws::Utils::Outcome<StartCelebrityRecognitionResult, RekognitionError> StartCelebrityRecognitionOutcome;
typedef Aws::Utils::Outcome<StartContentModerationResult, RekognitionError> StartContentModerationOutcome;
typedef Aws::Utils::Outcome<StartFaceDetectionResult, RekognitionError> StartFaceDetectionOutcome;
typedef Aws::Utils::Outcome<StartFaceSearchResult, RekognitionError> StartFaceSearchOutcome;
typedef Aws::Utils::Outcome<StartLabelDetectionResult, RekognitionError> StartLabelDetectionOutcome;
typedef Aws::Utils::Outcome<StartPersonTrackingResult, RekognitionError> StartPersonTrackingOutcome;
typedef Aws::Utils::Outcome<StartProjectVersionResult, RekognitionError> StartProjectVersionOutcome;
typedef Aws::Utils::Outcome<StartSegmentDetectionResult, RekognitionError> StartSegmentDetectionOutcome;
typedef Aws::Utils::Outcome<StartStreamProcessorResult, RekognitionError> StartStreamProcessorOutcome;
typedef Aws::Utils::Outcome<StartTextDetectionResult, RekognitionError> StartTextDetectionOutcome;
typedef Aws::Utils::Outcome<StopProjectVersionResult, RekognitionError> StopProjectVersionOutcome;
typedef Aws::Utils::Outcome<StopStreamProcessorResult, RekognitionError> StopStreamProcessorOutcome;
typedef std::future<CompareFacesOutcome> CompareFacesOutcomeCallable;
typedef std::future<CreateCollectionOutcome> CreateCollectionOutcomeCallable;
typedef std::future<CreateProjectOutcome> CreateProjectOutcomeCallable;
typedef std::future<CreateProjectVersionOutcome> CreateProjectVersionOutcomeCallable;
typedef std::future<CreateStreamProcessorOutcome> CreateStreamProcessorOutcomeCallable;
typedef std::future<DeleteCollectionOutcome> DeleteCollectionOutcomeCallable;
typedef std::future<DeleteFacesOutcome> DeleteFacesOutcomeCallable;
typedef std::future<DeleteProjectOutcome> DeleteProjectOutcomeCallable;
typedef std::future<DeleteProjectVersionOutcome> DeleteProjectVersionOutcomeCallable;
typedef std::future<DeleteStreamProcessorOutcome> DeleteStreamProcessorOutcomeCallable;
typedef std::future<DescribeCollectionOutcome> DescribeCollectionOutcomeCallable;
typedef std::future<DescribeProjectVersionsOutcome> DescribeProjectVersionsOutcomeCallable;
typedef std::future<DescribeProjectsOutcome> DescribeProjectsOutcomeCallable;
typedef std::future<DescribeStreamProcessorOutcome> DescribeStreamProcessorOutcomeCallable;
typedef std::future<DetectCustomLabelsOutcome> DetectCustomLabelsOutcomeCallable;
typedef std::future<DetectFacesOutcome> DetectFacesOutcomeCallable;
typedef std::future<DetectLabelsOutcome> DetectLabelsOutcomeCallable;
typedef std::future<DetectModerationLabelsOutcome> DetectModerationLabelsOutcomeCallable;
typedef std::future<DetectTextOutcome> DetectTextOutcomeCallable;
typedef std::future<GetCelebrityInfoOutcome> GetCelebrityInfoOutcomeCallable;
typedef std::future<GetCelebrityRecognitionOutcome> GetCelebrityRecognitionOutcomeCallable;
typedef std::future<GetContentModerationOutcome> GetContentModerationOutcomeCallable;
typedef std::future<GetFaceDetectionOutcome> GetFaceDetectionOutcomeCallable;
typedef std::future<GetFaceSearchOutcome> GetFaceSearchOutcomeCallable;
typedef std::future<GetLabelDetectionOutcome> GetLabelDetectionOutcomeCallable;
typedef std::future<GetPersonTrackingOutcome> GetPersonTrackingOutcomeCallable;
typedef std::future<GetSegmentDetectionOutcome> GetSegmentDetectionOutcomeCallable;
typedef std::future<GetTextDetectionOutcome> GetTextDetectionOutcomeCallable;
typedef std::future<IndexFacesOutcome> IndexFacesOutcomeCallable;
typedef std::future<ListCollectionsOutcome> ListCollectionsOutcomeCallable;
typedef std::future<ListFacesOutcome> ListFacesOutcomeCallable;
typedef std::future<ListStreamProcessorsOutcome> ListStreamProcessorsOutcomeCallable;
typedef std::future<RecognizeCelebritiesOutcome> RecognizeCelebritiesOutcomeCallable;
typedef std::future<SearchFacesOutcome> SearchFacesOutcomeCallable;
typedef std::future<SearchFacesByImageOutcome> SearchFacesByImageOutcomeCallable;
typedef std::future<StartCelebrityRecognitionOutcome> StartCelebrityRecognitionOutcomeCallable;
typedef std::future<StartContentModerationOutcome> StartContentModerationOutcomeCallable;
typedef std::future<StartFaceDetectionOutcome> StartFaceDetectionOutcomeCallable;
typedef std::future<StartFaceSearchOutcome> StartFaceSearchOutcomeCallable;
typedef std::future<StartLabelDetectionOutcome> StartLabelDetectionOutcomeCallable;
typedef std::future<StartPersonTrackingOutcome> StartPersonTrackingOutcomeCallable;
typedef std::future<StartProjectVersionOutcome> StartProjectVersionOutcomeCallable;
typedef std::future<StartSegmentDetectionOutcome> StartSegmentDetectionOutcomeCallable;
typedef std::future<StartStreamProcessorOutcome> StartStreamProcessorOutcomeCallable;
typedef std::future<StartTextDetectionOutcome> StartTextDetectionOutcomeCallable;
typedef std::future<StopProjectVersionOutcome> StopProjectVersionOutcomeCallable;
typedef std::future<StopStreamProcessorOutcome> StopStreamProcessorOutcomeCallable;
} // namespace Model
class RekognitionClient;
typedef std::function<void(const RekognitionClient*, const Model::CompareFacesRequest&, const Model::CompareFacesOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > CompareFacesResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::CreateCollectionRequest&, const Model::CreateCollectionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > CreateCollectionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::CreateProjectRequest&, const Model::CreateProjectOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > CreateProjectResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::CreateProjectVersionRequest&, const Model::CreateProjectVersionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > CreateProjectVersionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::CreateStreamProcessorRequest&, const Model::CreateStreamProcessorOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > CreateStreamProcessorResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DeleteCollectionRequest&, const Model::DeleteCollectionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DeleteCollectionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DeleteFacesRequest&, const Model::DeleteFacesOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DeleteFacesResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DeleteProjectRequest&, const Model::DeleteProjectOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DeleteProjectResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DeleteProjectVersionRequest&, const Model::DeleteProjectVersionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DeleteProjectVersionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DeleteStreamProcessorRequest&, const Model::DeleteStreamProcessorOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DeleteStreamProcessorResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DescribeCollectionRequest&, const Model::DescribeCollectionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DescribeCollectionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DescribeProjectVersionsRequest&, const Model::DescribeProjectVersionsOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DescribeProjectVersionsResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DescribeProjectsRequest&, const Model::DescribeProjectsOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DescribeProjectsResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DescribeStreamProcessorRequest&, const Model::DescribeStreamProcessorOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DescribeStreamProcessorResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DetectCustomLabelsRequest&, const Model::DetectCustomLabelsOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DetectCustomLabelsResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DetectFacesRequest&, const Model::DetectFacesOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DetectFacesResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DetectLabelsRequest&, const Model::DetectLabelsOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DetectLabelsResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DetectModerationLabelsRequest&, const Model::DetectModerationLabelsOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DetectModerationLabelsResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::DetectTextRequest&, const Model::DetectTextOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DetectTextResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::GetCelebrityInfoRequest&, const Model::GetCelebrityInfoOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > GetCelebrityInfoResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::GetCelebrityRecognitionRequest&, const Model::GetCelebrityRecognitionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > GetCelebrityRecognitionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::GetContentModerationRequest&, const Model::GetContentModerationOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > GetContentModerationResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::GetFaceDetectionRequest&, const Model::GetFaceDetectionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > GetFaceDetectionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::GetFaceSearchRequest&, const Model::GetFaceSearchOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > GetFaceSearchResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::GetLabelDetectionRequest&, const Model::GetLabelDetectionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > GetLabelDetectionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::GetPersonTrackingRequest&, const Model::GetPersonTrackingOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > GetPersonTrackingResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::GetSegmentDetectionRequest&, const Model::GetSegmentDetectionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > GetSegmentDetectionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::GetTextDetectionRequest&, const Model::GetTextDetectionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > GetTextDetectionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::IndexFacesRequest&, const Model::IndexFacesOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > IndexFacesResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::ListCollectionsRequest&, const Model::ListCollectionsOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > ListCollectionsResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::ListFacesRequest&, const Model::ListFacesOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > ListFacesResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::ListStreamProcessorsRequest&, const Model::ListStreamProcessorsOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > ListStreamProcessorsResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::RecognizeCelebritiesRequest&, const Model::RecognizeCelebritiesOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > RecognizeCelebritiesResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::SearchFacesRequest&, const Model::SearchFacesOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > SearchFacesResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::SearchFacesByImageRequest&, const Model::SearchFacesByImageOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > SearchFacesByImageResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::StartCelebrityRecognitionRequest&, const Model::StartCelebrityRecognitionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > StartCelebrityRecognitionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::StartContentModerationRequest&, const Model::StartContentModerationOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > StartContentModerationResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::StartFaceDetectionRequest&, const Model::StartFaceDetectionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > StartFaceDetectionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::StartFaceSearchRequest&, const Model::StartFaceSearchOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > StartFaceSearchResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::StartLabelDetectionRequest&, const Model::StartLabelDetectionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > StartLabelDetectionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::StartPersonTrackingRequest&, const Model::StartPersonTrackingOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > StartPersonTrackingResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::StartProjectVersionRequest&, const Model::StartProjectVersionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > StartProjectVersionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::StartSegmentDetectionRequest&, const Model::StartSegmentDetectionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > StartSegmentDetectionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::StartStreamProcessorRequest&, const Model::StartStreamProcessorOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > StartStreamProcessorResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::StartTextDetectionRequest&, const Model::StartTextDetectionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > StartTextDetectionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::StopProjectVersionRequest&, const Model::StopProjectVersionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > StopProjectVersionResponseReceivedHandler;
typedef std::function<void(const RekognitionClient*, const Model::StopStreamProcessorRequest&, const Model::StopStreamProcessorOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > StopStreamProcessorResponseReceivedHandler;
/**
* <p>This is the Amazon Rekognition API reference.</p>
*/
class AWS_REKOGNITION_API RekognitionClient : public Aws::Client::AWSJsonClient
{
public:
typedef Aws::Client::AWSJsonClient BASECLASS;
/**
* Initializes client to use DefaultCredentialProviderChain, with default http client factory, and optional client config. If client config
* is not specified, it will be initialized to default values.
*/
RekognitionClient(const Aws::Client::ClientConfiguration& clientConfiguration = Aws::Client::ClientConfiguration());
/**
* Initializes client to use SimpleAWSCredentialsProvider, with default http client factory, and optional client config. If client config
* is not specified, it will be initialized to default values.
*/
RekognitionClient(const Aws::Auth::AWSCredentials& credentials, const Aws::Client::ClientConfiguration& clientConfiguration = Aws::Client::ClientConfiguration());
/**
* Initializes client to use specified credentials provider with specified client config. If http client factory is not supplied,
* the default http client factory will be used
*/
RekognitionClient(const std::shared_ptr<Aws::Auth::AWSCredentialsProvider>& credentialsProvider,
const Aws::Client::ClientConfiguration& clientConfiguration = Aws::Client::ClientConfiguration());
virtual ~RekognitionClient();
/**
* <p>Compares a face in the <i>source</i> input image with each of the 100 largest
* faces detected in the <i>target</i> input image. </p> <p> If the source
* image contains multiple faces, the service detects the largest face and compares
* it with each face detected in the target image. </p> <p>You pass the
* input and target images either as base64-encoded image bytes or as references to
* images in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition
* operations, passing image bytes isn't supported. The image must be formatted as
* a PNG or JPEG file. </p> <p>In response, the operation returns an array of face
* matches ordered by similarity score in descending order. For each face match,
* the response provides a bounding box of the face, facial landmarks, pose details
* (pitch, role, and yaw), quality (brightness and sharpness), and confidence value
* (indicating the level of confidence that the bounding box contains a face). The
* response also provides a similarity score, which indicates how closely the faces
* match. </p> <p>By default, only faces with a similarity score of greater
* than or equal to 80% are returned in the response. You can change this value by
* specifying the <code>SimilarityThreshold</code> parameter.</p> <p>
* <code>CompareFaces</code> also returns an array of faces that don't match the
* source image. For each face, it returns a bounding box, confidence value,
* landmarks, pose details, and quality. The response also returns information
* about the face in the source image, including the bounding box of the face and
* confidence value.</p> <p>The <code>QualityFilter</code> input parameter allows
* you to filter out detected faces that dont meet a required quality bar. The
* quality bar is based on a variety of common use cases. Use
* <code>QualityFilter</code> to set the quality bar by specifying
* <code>LOW</code>, <code>MEDIUM</code>, or <code>HIGH</code>. If you do not want
* to filter detected faces, specify <code>NONE</code>. The default value is
* <code>NONE</code>. </p> <p>To use quality filtering, you need a
* collection associated with version 3 of the face model or higher. To get the
* version of the face model associated with a collection, call
* <a>DescribeCollection</a>. </p> <p>If the image doesn't contain Exif
* metadata, <code>CompareFaces</code> returns orientation information for the
* source and target images. Use these values to display the images with the
* correct image orientation.</p> <p>If no faces are detected in the source or
* target images, <code>CompareFaces</code> returns an
* <code>InvalidParameterException</code> error. </p> <p> This is a
* stateless API operation. That is, data returned by this operation doesn't
* persist.</p> <p>For an example, see Comparing Faces in Images in the
* Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions
* to perform the <code>rekognition:CompareFaces</code> action.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CompareFaces">AWS
* API Reference</a></p>
*/
virtual Model::CompareFacesOutcome CompareFaces(const Model::CompareFacesRequest& request) const;
/**
* <p>Compares a face in the <i>source</i> input image with each of the 100 largest
* faces detected in the <i>target</i> input image. </p> <p> If the source
* image contains multiple faces, the service detects the largest face and compares
* it with each face detected in the target image. </p> <p>You pass the
* input and target images either as base64-encoded image bytes or as references to
* images in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition
* operations, passing image bytes isn't supported. The image must be formatted as
* a PNG or JPEG file. </p> <p>In response, the operation returns an array of face
* matches ordered by similarity score in descending order. For each face match,
* the response provides a bounding box of the face, facial landmarks, pose details
* (pitch, role, and yaw), quality (brightness and sharpness), and confidence value
* (indicating the level of confidence that the bounding box contains a face). The
* response also provides a similarity score, which indicates how closely the faces
* match. </p> <p>By default, only faces with a similarity score of greater
* than or equal to 80% are returned in the response. You can change this value by
* specifying the <code>SimilarityThreshold</code> parameter.</p> <p>
* <code>CompareFaces</code> also returns an array of faces that don't match the
* source image. For each face, it returns a bounding box, confidence value,
* landmarks, pose details, and quality. The response also returns information
* about the face in the source image, including the bounding box of the face and
* confidence value.</p> <p>The <code>QualityFilter</code> input parameter allows
* you to filter out detected faces that dont meet a required quality bar. The
* quality bar is based on a variety of common use cases. Use
* <code>QualityFilter</code> to set the quality bar by specifying
* <code>LOW</code>, <code>MEDIUM</code>, or <code>HIGH</code>. If you do not want
* to filter detected faces, specify <code>NONE</code>. The default value is
* <code>NONE</code>. </p> <p>To use quality filtering, you need a
* collection associated with version 3 of the face model or higher. To get the
* version of the face model associated with a collection, call
* <a>DescribeCollection</a>. </p> <p>If the image doesn't contain Exif
* metadata, <code>CompareFaces</code> returns orientation information for the
* source and target images. Use these values to display the images with the
* correct image orientation.</p> <p>If no faces are detected in the source or
* target images, <code>CompareFaces</code> returns an
* <code>InvalidParameterException</code> error. </p> <p> This is a
* stateless API operation. That is, data returned by this operation doesn't
* persist.</p> <p>For an example, see Comparing Faces in Images in the
* Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions
* to perform the <code>rekognition:CompareFaces</code> action.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CompareFaces">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::CompareFacesOutcomeCallable CompareFacesCallable(const Model::CompareFacesRequest& request) const;
/**
* <p>Compares a face in the <i>source</i> input image with each of the 100 largest
* faces detected in the <i>target</i> input image. </p> <p> If the source
* image contains multiple faces, the service detects the largest face and compares
* it with each face detected in the target image. </p> <p>You pass the
* input and target images either as base64-encoded image bytes or as references to
* images in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition
* operations, passing image bytes isn't supported. The image must be formatted as
* a PNG or JPEG file. </p> <p>In response, the operation returns an array of face
* matches ordered by similarity score in descending order. For each face match,
* the response provides a bounding box of the face, facial landmarks, pose details
* (pitch, role, and yaw), quality (brightness and sharpness), and confidence value
* (indicating the level of confidence that the bounding box contains a face). The
* response also provides a similarity score, which indicates how closely the faces
* match. </p> <p>By default, only faces with a similarity score of greater
* than or equal to 80% are returned in the response. You can change this value by
* specifying the <code>SimilarityThreshold</code> parameter.</p> <p>
* <code>CompareFaces</code> also returns an array of faces that don't match the
* source image. For each face, it returns a bounding box, confidence value,
* landmarks, pose details, and quality. The response also returns information
* about the face in the source image, including the bounding box of the face and
* confidence value.</p> <p>The <code>QualityFilter</code> input parameter allows
* you to filter out detected faces that dont meet a required quality bar. The
* quality bar is based on a variety of common use cases. Use
* <code>QualityFilter</code> to set the quality bar by specifying
* <code>LOW</code>, <code>MEDIUM</code>, or <code>HIGH</code>. If you do not want
* to filter detected faces, specify <code>NONE</code>. The default value is
* <code>NONE</code>. </p> <p>To use quality filtering, you need a
* collection associated with version 3 of the face model or higher. To get the
* version of the face model associated with a collection, call
* <a>DescribeCollection</a>. </p> <p>If the image doesn't contain Exif
* metadata, <code>CompareFaces</code> returns orientation information for the
* source and target images. Use these values to display the images with the
* correct image orientation.</p> <p>If no faces are detected in the source or
* target images, <code>CompareFaces</code> returns an
* <code>InvalidParameterException</code> error. </p> <p> This is a
* stateless API operation. That is, data returned by this operation doesn't
* persist.</p> <p>For an example, see Comparing Faces in Images in the
* Amazon Rekognition Developer Guide.</p> <p>This operation requires permissions
* to perform the <code>rekognition:CompareFaces</code> action.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CompareFaces">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void CompareFacesAsync(const Model::CompareFacesRequest& request, const CompareFacesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Creates a collection in an AWS Region. You can add faces to the collection
* using the <a>IndexFaces</a> operation. </p> <p>For example, you might create
* collections, one for each of your application users. A user can then index faces
* using the <code>IndexFaces</code> operation and persist results in a specific
* collection. Then, a user can search the collection for faces in the
* user-specific container. </p> <p>When you create a collection, it is associated
* with the latest version of the face model version.</p> <p>Collection
* names are case-sensitive.</p> <p>This operation requires permissions to
* perform the <code>rekognition:CreateCollection</code> action.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CreateCollection">AWS
* API Reference</a></p>
*/
virtual Model::CreateCollectionOutcome CreateCollection(const Model::CreateCollectionRequest& request) const;
/**
* <p>Creates a collection in an AWS Region. You can add faces to the collection
* using the <a>IndexFaces</a> operation. </p> <p>For example, you might create
* collections, one for each of your application users. A user can then index faces
* using the <code>IndexFaces</code> operation and persist results in a specific
* collection. Then, a user can search the collection for faces in the
* user-specific container. </p> <p>When you create a collection, it is associated
* with the latest version of the face model version.</p> <p>Collection
* names are case-sensitive.</p> <p>This operation requires permissions to
* perform the <code>rekognition:CreateCollection</code> action.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CreateCollection">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::CreateCollectionOutcomeCallable CreateCollectionCallable(const Model::CreateCollectionRequest& request) const;
/**
* <p>Creates a collection in an AWS Region. You can add faces to the collection
* using the <a>IndexFaces</a> operation. </p> <p>For example, you might create
* collections, one for each of your application users. A user can then index faces
* using the <code>IndexFaces</code> operation and persist results in a specific
* collection. Then, a user can search the collection for faces in the
* user-specific container. </p> <p>When you create a collection, it is associated
* with the latest version of the face model version.</p> <p>Collection
* names are case-sensitive.</p> <p>This operation requires permissions to
* perform the <code>rekognition:CreateCollection</code> action.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CreateCollection">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void CreateCollectionAsync(const Model::CreateCollectionRequest& request, const CreateCollectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Creates a new Amazon Rekognition Custom Labels project. A project is a
* logical grouping of resources (images, Labels, models) and operations (training,
* evaluation and detection). </p> <p>This operation requires permissions to
* perform the <code>rekognition:CreateProject</code> action.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CreateProject">AWS
* API Reference</a></p>
*/
virtual Model::CreateProjectOutcome CreateProject(const Model::CreateProjectRequest& request) const;
/**
* <p>Creates a new Amazon Rekognition Custom Labels project. A project is a
* logical grouping of resources (images, Labels, models) and operations (training,
* evaluation and detection). </p> <p>This operation requires permissions to
* perform the <code>rekognition:CreateProject</code> action.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CreateProject">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::CreateProjectOutcomeCallable CreateProjectCallable(const Model::CreateProjectRequest& request) const;
/**
* <p>Creates a new Amazon Rekognition Custom Labels project. A project is a
* logical grouping of resources (images, Labels, models) and operations (training,
* evaluation and detection). </p> <p>This operation requires permissions to
* perform the <code>rekognition:CreateProject</code> action.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CreateProject">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void CreateProjectAsync(const Model::CreateProjectRequest& request, const CreateProjectResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Creates a new version of a model and begins training. Models are managed as
* part of an Amazon Rekognition Custom Labels project. You can specify one
* training dataset and one testing dataset. The response from
* <code>CreateProjectVersion</code> is an Amazon Resource Name (ARN) for the
* version of the model. </p> <p>Training takes a while to complete. You can get
* the current status by calling <a>DescribeProjectVersions</a>.</p> <p>Once
* training has successfully completed, call <a>DescribeProjectVersions</a> to get
* the training results and evaluate the model. </p> <p>After evaluating the model,
* you start the model by calling <a>StartProjectVersion</a>.</p> <p>This operation
* requires permissions to perform the
* <code>rekognition:CreateProjectVersion</code> action.</p><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CreateProjectVersion">AWS
* API Reference</a></p>
*/
virtual Model::CreateProjectVersionOutcome CreateProjectVersion(const Model::CreateProjectVersionRequest& request) const;
/**
* <p>Creates a new version of a model and begins training. Models are managed as
* part of an Amazon Rekognition Custom Labels project. You can specify one
* training dataset and one testing dataset. The response from
* <code>CreateProjectVersion</code> is an Amazon Resource Name (ARN) for the
* version of the model. </p> <p>Training takes a while to complete. You can get
* the current status by calling <a>DescribeProjectVersions</a>.</p> <p>Once
* training has successfully completed, call <a>DescribeProjectVersions</a> to get
* the training results and evaluate the model. </p> <p>After evaluating the model,
* you start the model by calling <a>StartProjectVersion</a>.</p> <p>This operation
* requires permissions to perform the
* <code>rekognition:CreateProjectVersion</code> action.</p><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CreateProjectVersion">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::CreateProjectVersionOutcomeCallable CreateProjectVersionCallable(const Model::CreateProjectVersionRequest& request) const;
/**
* <p>Creates a new version of a model and begins training. Models are managed as
* part of an Amazon Rekognition Custom Labels project. You can specify one
* training dataset and one testing dataset. The response from
* <code>CreateProjectVersion</code> is an Amazon Resource Name (ARN) for the
* version of the model. </p> <p>Training takes a while to complete. You can get
* the current status by calling <a>DescribeProjectVersions</a>.</p> <p>Once
* training has successfully completed, call <a>DescribeProjectVersions</a> to get
* the training results and evaluate the model. </p> <p>After evaluating the model,
* you start the model by calling <a>StartProjectVersion</a>.</p> <p>This operation
* requires permissions to perform the
* <code>rekognition:CreateProjectVersion</code> action.</p><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CreateProjectVersion">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void CreateProjectVersionAsync(const Model::CreateProjectVersionRequest& request, const CreateProjectVersionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Creates an Amazon Rekognition stream processor that you can use to detect and
* recognize faces in a streaming video.</p> <p>Amazon Rekognition Video is a
* consumer of live video from Amazon Kinesis Video Streams. Amazon Rekognition
* Video sends analysis results to Amazon Kinesis Data Streams.</p> <p>You provide
* as input a Kinesis video stream (<code>Input</code>) and a Kinesis data stream
* (<code>Output</code>) stream. You also specify the face recognition criteria in
* <code>Settings</code>. For example, the collection containing faces that you
* want to recognize. Use <code>Name</code> to assign an identifier for the stream
* processor. You use <code>Name</code> to manage the stream processor. For
* example, you can start processing the source video by calling
* <a>StartStreamProcessor</a> with the <code>Name</code> field. </p> <p>After you
* have finished analyzing a streaming video, use <a>StopStreamProcessor</a> to
* stop processing. You can delete the stream processor by calling
* <a>DeleteStreamProcessor</a>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CreateStreamProcessor">AWS
* API Reference</a></p>
*/
virtual Model::CreateStreamProcessorOutcome CreateStreamProcessor(const Model::CreateStreamProcessorRequest& request) const;
/**
* <p>Creates an Amazon Rekognition stream processor that you can use to detect and
* recognize faces in a streaming video.</p> <p>Amazon Rekognition Video is a
* consumer of live video from Amazon Kinesis Video Streams. Amazon Rekognition
* Video sends analysis results to Amazon Kinesis Data Streams.</p> <p>You provide
* as input a Kinesis video stream (<code>Input</code>) and a Kinesis data stream
* (<code>Output</code>) stream. You also specify the face recognition criteria in
* <code>Settings</code>. For example, the collection containing faces that you
* want to recognize. Use <code>Name</code> to assign an identifier for the stream
* processor. You use <code>Name</code> to manage the stream processor. For
* example, you can start processing the source video by calling
* <a>StartStreamProcessor</a> with the <code>Name</code> field. </p> <p>After you
* have finished analyzing a streaming video, use <a>StopStreamProcessor</a> to
* stop processing. You can delete the stream processor by calling
* <a>DeleteStreamProcessor</a>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CreateStreamProcessor">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::CreateStreamProcessorOutcomeCallable CreateStreamProcessorCallable(const Model::CreateStreamProcessorRequest& request) const;
/**
* <p>Creates an Amazon Rekognition stream processor that you can use to detect and
* recognize faces in a streaming video.</p> <p>Amazon Rekognition Video is a
* consumer of live video from Amazon Kinesis Video Streams. Amazon Rekognition
* Video sends analysis results to Amazon Kinesis Data Streams.</p> <p>You provide
* as input a Kinesis video stream (<code>Input</code>) and a Kinesis data stream
* (<code>Output</code>) stream. You also specify the face recognition criteria in
* <code>Settings</code>. For example, the collection containing faces that you
* want to recognize. Use <code>Name</code> to assign an identifier for the stream
* processor. You use <code>Name</code> to manage the stream processor. For
* example, you can start processing the source video by calling
* <a>StartStreamProcessor</a> with the <code>Name</code> field. </p> <p>After you
* have finished analyzing a streaming video, use <a>StopStreamProcessor</a> to
* stop processing. You can delete the stream processor by calling
* <a>DeleteStreamProcessor</a>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/CreateStreamProcessor">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void CreateStreamProcessorAsync(const Model::CreateStreamProcessorRequest& request, const CreateStreamProcessorResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Deletes the specified collection. Note that this operation removes all faces
* in the collection. For an example, see <a>delete-collection-procedure</a>.</p>
* <p>This operation requires permissions to perform the
* <code>rekognition:DeleteCollection</code> action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteCollection">AWS
* API Reference</a></p>
*/
virtual Model::DeleteCollectionOutcome DeleteCollection(const Model::DeleteCollectionRequest& request) const;
/**
* <p>Deletes the specified collection. Note that this operation removes all faces
* in the collection. For an example, see <a>delete-collection-procedure</a>.</p>
* <p>This operation requires permissions to perform the
* <code>rekognition:DeleteCollection</code> action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteCollection">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DeleteCollectionOutcomeCallable DeleteCollectionCallable(const Model::DeleteCollectionRequest& request) const;
/**
* <p>Deletes the specified collection. Note that this operation removes all faces
* in the collection. For an example, see <a>delete-collection-procedure</a>.</p>
* <p>This operation requires permissions to perform the
* <code>rekognition:DeleteCollection</code> action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteCollection">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DeleteCollectionAsync(const Model::DeleteCollectionRequest& request, const DeleteCollectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Deletes faces from a collection. You specify a collection ID and an array of
* face IDs to remove from the collection.</p> <p>This operation requires
* permissions to perform the <code>rekognition:DeleteFaces</code>
* action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteFaces">AWS
* API Reference</a></p>
*/
virtual Model::DeleteFacesOutcome DeleteFaces(const Model::DeleteFacesRequest& request) const;
/**
* <p>Deletes faces from a collection. You specify a collection ID and an array of
* face IDs to remove from the collection.</p> <p>This operation requires
* permissions to perform the <code>rekognition:DeleteFaces</code>
* action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteFaces">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DeleteFacesOutcomeCallable DeleteFacesCallable(const Model::DeleteFacesRequest& request) const;
/**
* <p>Deletes faces from a collection. You specify a collection ID and an array of
* face IDs to remove from the collection.</p> <p>This operation requires
* permissions to perform the <code>rekognition:DeleteFaces</code>
* action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteFaces">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DeleteFacesAsync(const Model::DeleteFacesRequest& request, const DeleteFacesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Deletes an Amazon Rekognition Custom Labels project. To delete a project you
* must first delete all models associated with the project. To delete a model, see
* <a>DeleteProjectVersion</a>.</p> <p>This operation requires permissions to
* perform the <code>rekognition:DeleteProject</code> action. </p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteProject">AWS
* API Reference</a></p>
*/
virtual Model::DeleteProjectOutcome DeleteProject(const Model::DeleteProjectRequest& request) const;
/**
* <p>Deletes an Amazon Rekognition Custom Labels project. To delete a project you
* must first delete all models associated with the project. To delete a model, see
* <a>DeleteProjectVersion</a>.</p> <p>This operation requires permissions to
* perform the <code>rekognition:DeleteProject</code> action. </p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteProject">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DeleteProjectOutcomeCallable DeleteProjectCallable(const Model::DeleteProjectRequest& request) const;
/**
* <p>Deletes an Amazon Rekognition Custom Labels project. To delete a project you
* must first delete all models associated with the project. To delete a model, see
* <a>DeleteProjectVersion</a>.</p> <p>This operation requires permissions to
* perform the <code>rekognition:DeleteProject</code> action. </p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteProject">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DeleteProjectAsync(const Model::DeleteProjectRequest& request, const DeleteProjectResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Deletes an Amazon Rekognition Custom Labels model. </p> <p>You can't delete a
* model if it is running or if it is training. To check the status of a model, use
* the <code>Status</code> field returned from <a>DescribeProjectVersions</a>. To
* stop a running model call <a>StopProjectVersion</a>. If the model is training,
* wait until it finishes.</p> <p>This operation requires permissions to perform
* the <code>rekognition:DeleteProjectVersion</code> action. </p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteProjectVersion">AWS
* API Reference</a></p>
*/
virtual Model::DeleteProjectVersionOutcome DeleteProjectVersion(const Model::DeleteProjectVersionRequest& request) const;
/**
* <p>Deletes an Amazon Rekognition Custom Labels model. </p> <p>You can't delete a
* model if it is running or if it is training. To check the status of a model, use
* the <code>Status</code> field returned from <a>DescribeProjectVersions</a>. To
* stop a running model call <a>StopProjectVersion</a>. If the model is training,
* wait until it finishes.</p> <p>This operation requires permissions to perform
* the <code>rekognition:DeleteProjectVersion</code> action. </p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteProjectVersion">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DeleteProjectVersionOutcomeCallable DeleteProjectVersionCallable(const Model::DeleteProjectVersionRequest& request) const;
/**
* <p>Deletes an Amazon Rekognition Custom Labels model. </p> <p>You can't delete a
* model if it is running or if it is training. To check the status of a model, use
* the <code>Status</code> field returned from <a>DescribeProjectVersions</a>. To
* stop a running model call <a>StopProjectVersion</a>. If the model is training,
* wait until it finishes.</p> <p>This operation requires permissions to perform
* the <code>rekognition:DeleteProjectVersion</code> action. </p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteProjectVersion">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DeleteProjectVersionAsync(const Model::DeleteProjectVersionRequest& request, const DeleteProjectVersionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Deletes the stream processor identified by <code>Name</code>. You assign the
* value for <code>Name</code> when you create the stream processor with
* <a>CreateStreamProcessor</a>. You might not be able to use the same name for a
* stream processor for a few seconds after calling
* <code>DeleteStreamProcessor</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteStreamProcessor">AWS
* API Reference</a></p>
*/
virtual Model::DeleteStreamProcessorOutcome DeleteStreamProcessor(const Model::DeleteStreamProcessorRequest& request) const;
/**
* <p>Deletes the stream processor identified by <code>Name</code>. You assign the
* value for <code>Name</code> when you create the stream processor with
* <a>CreateStreamProcessor</a>. You might not be able to use the same name for a
* stream processor for a few seconds after calling
* <code>DeleteStreamProcessor</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteStreamProcessor">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DeleteStreamProcessorOutcomeCallable DeleteStreamProcessorCallable(const Model::DeleteStreamProcessorRequest& request) const;
/**
* <p>Deletes the stream processor identified by <code>Name</code>. You assign the
* value for <code>Name</code> when you create the stream processor with
* <a>CreateStreamProcessor</a>. You might not be able to use the same name for a
* stream processor for a few seconds after calling
* <code>DeleteStreamProcessor</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DeleteStreamProcessor">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DeleteStreamProcessorAsync(const Model::DeleteStreamProcessorRequest& request, const DeleteStreamProcessorResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Describes the specified collection. You can use
* <code>DescribeCollection</code> to get information, such as the number of faces
* indexed into a collection and the version of the model used by the collection
* for face detection.</p> <p>For more information, see Describing a Collection in
* the Amazon Rekognition Developer Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DescribeCollection">AWS
* API Reference</a></p>
*/
virtual Model::DescribeCollectionOutcome DescribeCollection(const Model::DescribeCollectionRequest& request) const;
/**
* <p>Describes the specified collection. You can use
* <code>DescribeCollection</code> to get information, such as the number of faces
* indexed into a collection and the version of the model used by the collection
* for face detection.</p> <p>For more information, see Describing a Collection in
* the Amazon Rekognition Developer Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DescribeCollection">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DescribeCollectionOutcomeCallable DescribeCollectionCallable(const Model::DescribeCollectionRequest& request) const;
/**
* <p>Describes the specified collection. You can use
* <code>DescribeCollection</code> to get information, such as the number of faces
* indexed into a collection and the version of the model used by the collection
* for face detection.</p> <p>For more information, see Describing a Collection in
* the Amazon Rekognition Developer Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DescribeCollection">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DescribeCollectionAsync(const Model::DescribeCollectionRequest& request, const DescribeCollectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Lists and describes the models in an Amazon Rekognition Custom Labels
* project. You can specify up to 10 model versions in
* <code>ProjectVersionArns</code>. If you don't specify a value, descriptions for
* all models are returned.</p> <p>This operation requires permissions to perform
* the <code>rekognition:DescribeProjectVersions</code> action.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DescribeProjectVersions">AWS
* API Reference</a></p>
*/
virtual Model::DescribeProjectVersionsOutcome DescribeProjectVersions(const Model::DescribeProjectVersionsRequest& request) const;
/**
* <p>Lists and describes the models in an Amazon Rekognition Custom Labels
* project. You can specify up to 10 model versions in
* <code>ProjectVersionArns</code>. If you don't specify a value, descriptions for
* all models are returned.</p> <p>This operation requires permissions to perform
* the <code>rekognition:DescribeProjectVersions</code> action.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DescribeProjectVersions">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DescribeProjectVersionsOutcomeCallable DescribeProjectVersionsCallable(const Model::DescribeProjectVersionsRequest& request) const;
/**
* <p>Lists and describes the models in an Amazon Rekognition Custom Labels
* project. You can specify up to 10 model versions in
* <code>ProjectVersionArns</code>. If you don't specify a value, descriptions for
* all models are returned.</p> <p>This operation requires permissions to perform
* the <code>rekognition:DescribeProjectVersions</code> action.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DescribeProjectVersions">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DescribeProjectVersionsAsync(const Model::DescribeProjectVersionsRequest& request, const DescribeProjectVersionsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Lists and gets information about your Amazon Rekognition Custom Labels
* projects.</p> <p>This operation requires permissions to perform the
* <code>rekognition:DescribeProjects</code> action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DescribeProjects">AWS
* API Reference</a></p>
*/
virtual Model::DescribeProjectsOutcome DescribeProjects(const Model::DescribeProjectsRequest& request) const;
/**
* <p>Lists and gets information about your Amazon Rekognition Custom Labels
* projects.</p> <p>This operation requires permissions to perform the
* <code>rekognition:DescribeProjects</code> action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DescribeProjects">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DescribeProjectsOutcomeCallable DescribeProjectsCallable(const Model::DescribeProjectsRequest& request) const;
/**
* <p>Lists and gets information about your Amazon Rekognition Custom Labels
* projects.</p> <p>This operation requires permissions to perform the
* <code>rekognition:DescribeProjects</code> action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DescribeProjects">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DescribeProjectsAsync(const Model::DescribeProjectsRequest& request, const DescribeProjectsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Provides information about a stream processor created by
* <a>CreateStreamProcessor</a>. You can get information about the input and output
* streams, the input parameters for the face recognition being performed, and the
* current status of the stream processor.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DescribeStreamProcessor">AWS
* API Reference</a></p>
*/
virtual Model::DescribeStreamProcessorOutcome DescribeStreamProcessor(const Model::DescribeStreamProcessorRequest& request) const;
/**
* <p>Provides information about a stream processor created by
* <a>CreateStreamProcessor</a>. You can get information about the input and output
* streams, the input parameters for the face recognition being performed, and the
* current status of the stream processor.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DescribeStreamProcessor">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DescribeStreamProcessorOutcomeCallable DescribeStreamProcessorCallable(const Model::DescribeStreamProcessorRequest& request) const;
/**
* <p>Provides information about a stream processor created by
* <a>CreateStreamProcessor</a>. You can get information about the input and output
* streams, the input parameters for the face recognition being performed, and the
* current status of the stream processor.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DescribeStreamProcessor">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DescribeStreamProcessorAsync(const Model::DescribeStreamProcessorRequest& request, const DescribeStreamProcessorResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Detects custom labels in a supplied image by using an Amazon Rekognition
* Custom Labels model. </p> <p>You specify which version of a model version to use
* by using the <code>ProjectVersionArn</code> input parameter. </p> <p>You pass
* the input image as base64-encoded image bytes or as a reference to an image in
* an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition
* operations, passing image bytes is not supported. The image must be either a PNG
* or JPEG formatted file. </p> <p> For each object that the model version detects
* on an image, the API returns a (<code>CustomLabel</code>) object in an array
* (<code>CustomLabels</code>). Each <code>CustomLabel</code> object provides the
* label name (<code>Name</code>), the level of confidence that the image contains
* the object (<code>Confidence</code>), and object location information, if it
* exists, for the label on the image (<code>Geometry</code>). </p> <p>During
* training model calculates a threshold value that determines if a prediction for
* a label is true. By default, <code>DetectCustomLabels</code> doesn't return
* labels whose confidence value is below the model's calculated threshold value.
* To filter labels that are returned, specify a value for
* <code>MinConfidence</code> that is higher than the model's calculated threshold.
* You can get the model's calculated threshold from the model's training results
* shown in the Amazon Rekognition Custom Labels console. To get all labels,
* regardless of confidence, specify a <code>MinConfidence</code> value of 0. </p>
* <p>You can also add the <code>MaxResults</code> parameter to limit the number of
* labels returned. </p> <p>This is a stateless API operation. That is, the
* operation does not persist any data.</p> <p>This operation requires permissions
* to perform the <code>rekognition:DetectCustomLabels</code> action.
* </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectCustomLabels">AWS
* API Reference</a></p>
*/
virtual Model::DetectCustomLabelsOutcome DetectCustomLabels(const Model::DetectCustomLabelsRequest& request) const;
/**
* <p>Detects custom labels in a supplied image by using an Amazon Rekognition
* Custom Labels model. </p> <p>You specify which version of a model version to use
* by using the <code>ProjectVersionArn</code> input parameter. </p> <p>You pass
* the input image as base64-encoded image bytes or as a reference to an image in
* an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition
* operations, passing image bytes is not supported. The image must be either a PNG
* or JPEG formatted file. </p> <p> For each object that the model version detects
* on an image, the API returns a (<code>CustomLabel</code>) object in an array
* (<code>CustomLabels</code>). Each <code>CustomLabel</code> object provides the
* label name (<code>Name</code>), the level of confidence that the image contains
* the object (<code>Confidence</code>), and object location information, if it
* exists, for the label on the image (<code>Geometry</code>). </p> <p>During
* training model calculates a threshold value that determines if a prediction for
* a label is true. By default, <code>DetectCustomLabels</code> doesn't return
* labels whose confidence value is below the model's calculated threshold value.
* To filter labels that are returned, specify a value for
* <code>MinConfidence</code> that is higher than the model's calculated threshold.
* You can get the model's calculated threshold from the model's training results
* shown in the Amazon Rekognition Custom Labels console. To get all labels,
* regardless of confidence, specify a <code>MinConfidence</code> value of 0. </p>
* <p>You can also add the <code>MaxResults</code> parameter to limit the number of
* labels returned. </p> <p>This is a stateless API operation. That is, the
* operation does not persist any data.</p> <p>This operation requires permissions
* to perform the <code>rekognition:DetectCustomLabels</code> action.
* </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectCustomLabels">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DetectCustomLabelsOutcomeCallable DetectCustomLabelsCallable(const Model::DetectCustomLabelsRequest& request) const;
/**
* <p>Detects custom labels in a supplied image by using an Amazon Rekognition
* Custom Labels model. </p> <p>You specify which version of a model version to use
* by using the <code>ProjectVersionArn</code> input parameter. </p> <p>You pass
* the input image as base64-encoded image bytes or as a reference to an image in
* an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition
* operations, passing image bytes is not supported. The image must be either a PNG
* or JPEG formatted file. </p> <p> For each object that the model version detects
* on an image, the API returns a (<code>CustomLabel</code>) object in an array
* (<code>CustomLabels</code>). Each <code>CustomLabel</code> object provides the
* label name (<code>Name</code>), the level of confidence that the image contains
* the object (<code>Confidence</code>), and object location information, if it
* exists, for the label on the image (<code>Geometry</code>). </p> <p>During
* training model calculates a threshold value that determines if a prediction for
* a label is true. By default, <code>DetectCustomLabels</code> doesn't return
* labels whose confidence value is below the model's calculated threshold value.
* To filter labels that are returned, specify a value for
* <code>MinConfidence</code> that is higher than the model's calculated threshold.
* You can get the model's calculated threshold from the model's training results
* shown in the Amazon Rekognition Custom Labels console. To get all labels,
* regardless of confidence, specify a <code>MinConfidence</code> value of 0. </p>
* <p>You can also add the <code>MaxResults</code> parameter to limit the number of
* labels returned. </p> <p>This is a stateless API operation. That is, the
* operation does not persist any data.</p> <p>This operation requires permissions
* to perform the <code>rekognition:DetectCustomLabels</code> action.
* </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectCustomLabels">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DetectCustomLabelsAsync(const Model::DetectCustomLabelsRequest& request, const DetectCustomLabelsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Detects faces within an image that is provided as input.</p> <p>
* <code>DetectFaces</code> detects the 100 largest faces in the image. For each
* face detected, the operation returns face details. These details include a
* bounding box of the face, a confidence value (that the bounding box contains a
* face), and a fixed set of attributes such as facial landmarks (for example,
* coordinates of eye and mouth), presence of beard, sunglasses, and so on. </p>
* <p>The face-detection algorithm is most effective on frontal faces. For
* non-frontal or obscured faces, the algorithm might not detect the faces or might
* detect faces with lower confidence. </p> <p>You pass the input image either as
* base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket.
* If you use the AWS CLI to call Amazon Rekognition operations, passing image
* bytes is not supported. The image must be either a PNG or JPEG formatted file.
* </p> <p>This is a stateless API operation. That is, the operation does
* not persist any data.</p> <p>This operation requires permissions to
* perform the <code>rekognition:DetectFaces</code> action. </p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectFaces">AWS
* API Reference</a></p>
*/
virtual Model::DetectFacesOutcome DetectFaces(const Model::DetectFacesRequest& request) const;
/**
* <p>Detects faces within an image that is provided as input.</p> <p>
* <code>DetectFaces</code> detects the 100 largest faces in the image. For each
* face detected, the operation returns face details. These details include a
* bounding box of the face, a confidence value (that the bounding box contains a
* face), and a fixed set of attributes such as facial landmarks (for example,
* coordinates of eye and mouth), presence of beard, sunglasses, and so on. </p>
* <p>The face-detection algorithm is most effective on frontal faces. For
* non-frontal or obscured faces, the algorithm might not detect the faces or might
* detect faces with lower confidence. </p> <p>You pass the input image either as
* base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket.
* If you use the AWS CLI to call Amazon Rekognition operations, passing image
* bytes is not supported. The image must be either a PNG or JPEG formatted file.
* </p> <p>This is a stateless API operation. That is, the operation does
* not persist any data.</p> <p>This operation requires permissions to
* perform the <code>rekognition:DetectFaces</code> action. </p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectFaces">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DetectFacesOutcomeCallable DetectFacesCallable(const Model::DetectFacesRequest& request) const;
/**
* <p>Detects faces within an image that is provided as input.</p> <p>
* <code>DetectFaces</code> detects the 100 largest faces in the image. For each
* face detected, the operation returns face details. These details include a
* bounding box of the face, a confidence value (that the bounding box contains a
* face), and a fixed set of attributes such as facial landmarks (for example,
* coordinates of eye and mouth), presence of beard, sunglasses, and so on. </p>
* <p>The face-detection algorithm is most effective on frontal faces. For
* non-frontal or obscured faces, the algorithm might not detect the faces or might
* detect faces with lower confidence. </p> <p>You pass the input image either as
* base64-encoded image bytes or as a reference to an image in an Amazon S3 bucket.
* If you use the AWS CLI to call Amazon Rekognition operations, passing image
* bytes is not supported. The image must be either a PNG or JPEG formatted file.
* </p> <p>This is a stateless API operation. That is, the operation does
* not persist any data.</p> <p>This operation requires permissions to
* perform the <code>rekognition:DetectFaces</code> action. </p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectFaces">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DetectFacesAsync(const Model::DetectFacesRequest& request, const DetectFacesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Detects instances of real-world entities within an image (JPEG or PNG)
* provided as input. This includes objects like flower, tree, and table; events
* like wedding, graduation, and birthday party; and concepts like landscape,
* evening, and nature. </p> <p>For an example, see Analyzing Images Stored in an
* Amazon S3 Bucket in the Amazon Rekognition Developer Guide.</p> <p>
* <code>DetectLabels</code> does not support the detection of activities. However,
* activity detection is supported for label detection in videos. For more
* information, see StartLabelDetection in the Amazon Rekognition Developer
* Guide.</p> <p>You pass the input image as base64-encoded image bytes or
* as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to
* call Amazon Rekognition operations, passing image bytes is not supported. The
* image must be either a PNG or JPEG formatted file. </p> <p> For each object,
* scene, and concept the API returns one or more labels. Each label provides the
* object name, and the level of confidence that the image contains the object. For
* example, suppose the input image has a lighthouse, the sea, and a rock. The
* response includes all three labels, one for each object. </p> <p> <code>{Name:
* lighthouse, Confidence: 98.4629}</code> </p> <p> <code>{Name: rock,Confidence:
* 79.2097}</code> </p> <p> <code> {Name: sea,Confidence: 75.061}</code> </p> <p>In
* the preceding example, the operation returns one label for each of the three
* objects. The operation can also return multiple labels for the same object in
* the image. For example, if the input image shows a flower (for example, a
* tulip), the operation might return the following three labels. </p> <p>
* <code>{Name: flower,Confidence: 99.0562}</code> </p> <p> <code>{Name:
* plant,Confidence: 99.0562}</code> </p> <p> <code>{Name: tulip,Confidence:
* 99.0562}</code> </p> <p>In this example, the detection algorithm more precisely
* identifies the flower as a tulip.</p> <p>In response, the API returns an array
* of labels. In addition, the response also includes the orientation correction.
* Optionally, you can specify <code>MinConfidence</code> to control the confidence
* threshold for the labels returned. The default is 55%. You can also add the
* <code>MaxLabels</code> parameter to limit the number of labels returned. </p>
* <p>If the object detected is a person, the operation doesn't provide the
* same facial details that the <a>DetectFaces</a> operation provides.</p>
* <p> <code>DetectLabels</code> returns bounding boxes for instances of common
* object labels in an array of <a>Instance</a> objects. An <code>Instance</code>
* object contains a <a>BoundingBox</a> object, for the location of the label on
* the image. It also includes the confidence by which the bounding box was
* detected.</p> <p> <code>DetectLabels</code> also returns a hierarchical taxonomy
* of detected labels. For example, a detected car might be assigned the label
* <i>car</i>. The label <i>car</i> has two parent labels: <i>Vehicle</i> (its
* parent) and <i>Transportation</i> (its grandparent). The response returns the
* entire list of ancestors for a label. Each ancestor is a unique label in the
* response. In the previous example, <i>Car</i>, <i>Vehicle</i>, and
* <i>Transportation</i> are returned as unique labels in the response. </p>
* <p>This is a stateless API operation. That is, the operation does not persist
* any data.</p> <p>This operation requires permissions to perform the
* <code>rekognition:DetectLabels</code> action. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectLabels">AWS
* API Reference</a></p>
*/
virtual Model::DetectLabelsOutcome DetectLabels(const Model::DetectLabelsRequest& request) const;
/**
* <p>Detects instances of real-world entities within an image (JPEG or PNG)
* provided as input. This includes objects like flower, tree, and table; events
* like wedding, graduation, and birthday party; and concepts like landscape,
* evening, and nature. </p> <p>For an example, see Analyzing Images Stored in an
* Amazon S3 Bucket in the Amazon Rekognition Developer Guide.</p> <p>
* <code>DetectLabels</code> does not support the detection of activities. However,
* activity detection is supported for label detection in videos. For more
* information, see StartLabelDetection in the Amazon Rekognition Developer
* Guide.</p> <p>You pass the input image as base64-encoded image bytes or
* as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to
* call Amazon Rekognition operations, passing image bytes is not supported. The
* image must be either a PNG or JPEG formatted file. </p> <p> For each object,
* scene, and concept the API returns one or more labels. Each label provides the
* object name, and the level of confidence that the image contains the object. For
* example, suppose the input image has a lighthouse, the sea, and a rock. The
* response includes all three labels, one for each object. </p> <p> <code>{Name:
* lighthouse, Confidence: 98.4629}</code> </p> <p> <code>{Name: rock,Confidence:
* 79.2097}</code> </p> <p> <code> {Name: sea,Confidence: 75.061}</code> </p> <p>In
* the preceding example, the operation returns one label for each of the three
* objects. The operation can also return multiple labels for the same object in
* the image. For example, if the input image shows a flower (for example, a
* tulip), the operation might return the following three labels. </p> <p>
* <code>{Name: flower,Confidence: 99.0562}</code> </p> <p> <code>{Name:
* plant,Confidence: 99.0562}</code> </p> <p> <code>{Name: tulip,Confidence:
* 99.0562}</code> </p> <p>In this example, the detection algorithm more precisely
* identifies the flower as a tulip.</p> <p>In response, the API returns an array
* of labels. In addition, the response also includes the orientation correction.
* Optionally, you can specify <code>MinConfidence</code> to control the confidence
* threshold for the labels returned. The default is 55%. You can also add the
* <code>MaxLabels</code> parameter to limit the number of labels returned. </p>
* <p>If the object detected is a person, the operation doesn't provide the
* same facial details that the <a>DetectFaces</a> operation provides.</p>
* <p> <code>DetectLabels</code> returns bounding boxes for instances of common
* object labels in an array of <a>Instance</a> objects. An <code>Instance</code>
* object contains a <a>BoundingBox</a> object, for the location of the label on
* the image. It also includes the confidence by which the bounding box was
* detected.</p> <p> <code>DetectLabels</code> also returns a hierarchical taxonomy
* of detected labels. For example, a detected car might be assigned the label
* <i>car</i>. The label <i>car</i> has two parent labels: <i>Vehicle</i> (its
* parent) and <i>Transportation</i> (its grandparent). The response returns the
* entire list of ancestors for a label. Each ancestor is a unique label in the
* response. In the previous example, <i>Car</i>, <i>Vehicle</i>, and
* <i>Transportation</i> are returned as unique labels in the response. </p>
* <p>This is a stateless API operation. That is, the operation does not persist
* any data.</p> <p>This operation requires permissions to perform the
* <code>rekognition:DetectLabels</code> action. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectLabels">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DetectLabelsOutcomeCallable DetectLabelsCallable(const Model::DetectLabelsRequest& request) const;
/**
* <p>Detects instances of real-world entities within an image (JPEG or PNG)
* provided as input. This includes objects like flower, tree, and table; events
* like wedding, graduation, and birthday party; and concepts like landscape,
* evening, and nature. </p> <p>For an example, see Analyzing Images Stored in an
* Amazon S3 Bucket in the Amazon Rekognition Developer Guide.</p> <p>
* <code>DetectLabels</code> does not support the detection of activities. However,
* activity detection is supported for label detection in videos. For more
* information, see StartLabelDetection in the Amazon Rekognition Developer
* Guide.</p> <p>You pass the input image as base64-encoded image bytes or
* as a reference to an image in an Amazon S3 bucket. If you use the AWS CLI to
* call Amazon Rekognition operations, passing image bytes is not supported. The
* image must be either a PNG or JPEG formatted file. </p> <p> For each object,
* scene, and concept the API returns one or more labels. Each label provides the
* object name, and the level of confidence that the image contains the object. For
* example, suppose the input image has a lighthouse, the sea, and a rock. The
* response includes all three labels, one for each object. </p> <p> <code>{Name:
* lighthouse, Confidence: 98.4629}</code> </p> <p> <code>{Name: rock,Confidence:
* 79.2097}</code> </p> <p> <code> {Name: sea,Confidence: 75.061}</code> </p> <p>In
* the preceding example, the operation returns one label for each of the three
* objects. The operation can also return multiple labels for the same object in
* the image. For example, if the input image shows a flower (for example, a
* tulip), the operation might return the following three labels. </p> <p>
* <code>{Name: flower,Confidence: 99.0562}</code> </p> <p> <code>{Name:
* plant,Confidence: 99.0562}</code> </p> <p> <code>{Name: tulip,Confidence:
* 99.0562}</code> </p> <p>In this example, the detection algorithm more precisely
* identifies the flower as a tulip.</p> <p>In response, the API returns an array
* of labels. In addition, the response also includes the orientation correction.
* Optionally, you can specify <code>MinConfidence</code> to control the confidence
* threshold for the labels returned. The default is 55%. You can also add the
* <code>MaxLabels</code> parameter to limit the number of labels returned. </p>
* <p>If the object detected is a person, the operation doesn't provide the
* same facial details that the <a>DetectFaces</a> operation provides.</p>
* <p> <code>DetectLabels</code> returns bounding boxes for instances of common
* object labels in an array of <a>Instance</a> objects. An <code>Instance</code>
* object contains a <a>BoundingBox</a> object, for the location of the label on
* the image. It also includes the confidence by which the bounding box was
* detected.</p> <p> <code>DetectLabels</code> also returns a hierarchical taxonomy
* of detected labels. For example, a detected car might be assigned the label
* <i>car</i>. The label <i>car</i> has two parent labels: <i>Vehicle</i> (its
* parent) and <i>Transportation</i> (its grandparent). The response returns the
* entire list of ancestors for a label. Each ancestor is a unique label in the
* response. In the previous example, <i>Car</i>, <i>Vehicle</i>, and
* <i>Transportation</i> are returned as unique labels in the response. </p>
* <p>This is a stateless API operation. That is, the operation does not persist
* any data.</p> <p>This operation requires permissions to perform the
* <code>rekognition:DetectLabels</code> action. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectLabels">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DetectLabelsAsync(const Model::DetectLabelsRequest& request, const DetectLabelsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Detects unsafe content in a specified JPEG or PNG format image. Use
* <code>DetectModerationLabels</code> to moderate images depending on your
* requirements. For example, you might want to filter images that contain nudity,
* but not images containing suggestive content.</p> <p>To filter images, use the
* labels returned by <code>DetectModerationLabels</code> to determine which types
* of content are appropriate.</p> <p>For information about moderation labels, see
* Detecting Unsafe Content in the Amazon Rekognition Developer Guide.</p> <p>You
* pass the input image either as base64-encoded image bytes or as a reference to
* an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon
* Rekognition operations, passing image bytes is not supported. The image must be
* either a PNG or JPEG formatted file. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectModerationLabels">AWS
* API Reference</a></p>
*/
virtual Model::DetectModerationLabelsOutcome DetectModerationLabels(const Model::DetectModerationLabelsRequest& request) const;
/**
* <p>Detects unsafe content in a specified JPEG or PNG format image. Use
* <code>DetectModerationLabels</code> to moderate images depending on your
* requirements. For example, you might want to filter images that contain nudity,
* but not images containing suggestive content.</p> <p>To filter images, use the
* labels returned by <code>DetectModerationLabels</code> to determine which types
* of content are appropriate.</p> <p>For information about moderation labels, see
* Detecting Unsafe Content in the Amazon Rekognition Developer Guide.</p> <p>You
* pass the input image either as base64-encoded image bytes or as a reference to
* an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon
* Rekognition operations, passing image bytes is not supported. The image must be
* either a PNG or JPEG formatted file. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectModerationLabels">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DetectModerationLabelsOutcomeCallable DetectModerationLabelsCallable(const Model::DetectModerationLabelsRequest& request) const;
/**
* <p>Detects unsafe content in a specified JPEG or PNG format image. Use
* <code>DetectModerationLabels</code> to moderate images depending on your
* requirements. For example, you might want to filter images that contain nudity,
* but not images containing suggestive content.</p> <p>To filter images, use the
* labels returned by <code>DetectModerationLabels</code> to determine which types
* of content are appropriate.</p> <p>For information about moderation labels, see
* Detecting Unsafe Content in the Amazon Rekognition Developer Guide.</p> <p>You
* pass the input image either as base64-encoded image bytes or as a reference to
* an image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon
* Rekognition operations, passing image bytes is not supported. The image must be
* either a PNG or JPEG formatted file. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectModerationLabels">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DetectModerationLabelsAsync(const Model::DetectModerationLabelsRequest& request, const DetectModerationLabelsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Detects text in the input image and converts it into machine-readable
* text.</p> <p>Pass the input image as base64-encoded image bytes or as a
* reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call
* Amazon Rekognition operations, you must pass it as a reference to an image in an
* Amazon S3 bucket. For the AWS CLI, passing image bytes is not supported. The
* image must be either a .png or .jpeg formatted file. </p> <p>The
* <code>DetectText</code> operation returns text in an array of
* <a>TextDetection</a> elements, <code>TextDetections</code>. Each
* <code>TextDetection</code> element provides information about a single word or
* line of text that was detected in the image. </p> <p>A word is one or more ISO
* basic latin script characters that are not separated by spaces.
* <code>DetectText</code> can detect up to 50 words in an image.</p> <p>A line is
* a string of equally spaced words. A line isn't necessarily a complete sentence.
* For example, a driver's license number is detected as a line. A line ends when
* there is no aligned text after it. Also, a line ends when there is a large gap
* between words, relative to the length of the words. This means, depending on the
* gap between words, Amazon Rekognition may detect multiple lines in text aligned
* in the same direction. Periods don't represent the end of a line. If a sentence
* spans multiple lines, the <code>DetectText</code> operation returns multiple
* lines.</p> <p>To determine whether a <code>TextDetection</code> element is a
* line of text or a word, use the <code>TextDetection</code> object
* <code>Type</code> field. </p> <p>To be detected, text must be within +/- 90
* degrees orientation of the horizontal axis.</p> <p>For more information, see
* DetectText in the Amazon Rekognition Developer Guide.</p><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectText">AWS
* API Reference</a></p>
*/
virtual Model::DetectTextOutcome DetectText(const Model::DetectTextRequest& request) const;
/**
* <p>Detects text in the input image and converts it into machine-readable
* text.</p> <p>Pass the input image as base64-encoded image bytes or as a
* reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call
* Amazon Rekognition operations, you must pass it as a reference to an image in an
* Amazon S3 bucket. For the AWS CLI, passing image bytes is not supported. The
* image must be either a .png or .jpeg formatted file. </p> <p>The
* <code>DetectText</code> operation returns text in an array of
* <a>TextDetection</a> elements, <code>TextDetections</code>. Each
* <code>TextDetection</code> element provides information about a single word or
* line of text that was detected in the image. </p> <p>A word is one or more ISO
* basic latin script characters that are not separated by spaces.
* <code>DetectText</code> can detect up to 50 words in an image.</p> <p>A line is
* a string of equally spaced words. A line isn't necessarily a complete sentence.
* For example, a driver's license number is detected as a line. A line ends when
* there is no aligned text after it. Also, a line ends when there is a large gap
* between words, relative to the length of the words. This means, depending on the
* gap between words, Amazon Rekognition may detect multiple lines in text aligned
* in the same direction. Periods don't represent the end of a line. If a sentence
* spans multiple lines, the <code>DetectText</code> operation returns multiple
* lines.</p> <p>To determine whether a <code>TextDetection</code> element is a
* line of text or a word, use the <code>TextDetection</code> object
* <code>Type</code> field. </p> <p>To be detected, text must be within +/- 90
* degrees orientation of the horizontal axis.</p> <p>For more information, see
* DetectText in the Amazon Rekognition Developer Guide.</p><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectText">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DetectTextOutcomeCallable DetectTextCallable(const Model::DetectTextRequest& request) const;
/**
* <p>Detects text in the input image and converts it into machine-readable
* text.</p> <p>Pass the input image as base64-encoded image bytes or as a
* reference to an image in an Amazon S3 bucket. If you use the AWS CLI to call
* Amazon Rekognition operations, you must pass it as a reference to an image in an
* Amazon S3 bucket. For the AWS CLI, passing image bytes is not supported. The
* image must be either a .png or .jpeg formatted file. </p> <p>The
* <code>DetectText</code> operation returns text in an array of
* <a>TextDetection</a> elements, <code>TextDetections</code>. Each
* <code>TextDetection</code> element provides information about a single word or
* line of text that was detected in the image. </p> <p>A word is one or more ISO
* basic latin script characters that are not separated by spaces.
* <code>DetectText</code> can detect up to 50 words in an image.</p> <p>A line is
* a string of equally spaced words. A line isn't necessarily a complete sentence.
* For example, a driver's license number is detected as a line. A line ends when
* there is no aligned text after it. Also, a line ends when there is a large gap
* between words, relative to the length of the words. This means, depending on the
* gap between words, Amazon Rekognition may detect multiple lines in text aligned
* in the same direction. Periods don't represent the end of a line. If a sentence
* spans multiple lines, the <code>DetectText</code> operation returns multiple
* lines.</p> <p>To determine whether a <code>TextDetection</code> element is a
* line of text or a word, use the <code>TextDetection</code> object
* <code>Type</code> field. </p> <p>To be detected, text must be within +/- 90
* degrees orientation of the horizontal axis.</p> <p>For more information, see
* DetectText in the Amazon Rekognition Developer Guide.</p><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/DetectText">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DetectTextAsync(const Model::DetectTextRequest& request, const DetectTextResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Gets the name and additional information about a celebrity based on his or
* her Amazon Rekognition ID. The additional information is returned as an array of
* URLs. If there is no additional information about the celebrity, this list is
* empty.</p> <p>For more information, see Recognizing Celebrities in an Image in
* the Amazon Rekognition Developer Guide.</p> <p>This operation requires
* permissions to perform the <code>rekognition:GetCelebrityInfo</code> action.
* </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetCelebrityInfo">AWS
* API Reference</a></p>
*/
virtual Model::GetCelebrityInfoOutcome GetCelebrityInfo(const Model::GetCelebrityInfoRequest& request) const;
/**
* <p>Gets the name and additional information about a celebrity based on his or
* her Amazon Rekognition ID. The additional information is returned as an array of
* URLs. If there is no additional information about the celebrity, this list is
* empty.</p> <p>For more information, see Recognizing Celebrities in an Image in
* the Amazon Rekognition Developer Guide.</p> <p>This operation requires
* permissions to perform the <code>rekognition:GetCelebrityInfo</code> action.
* </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetCelebrityInfo">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::GetCelebrityInfoOutcomeCallable GetCelebrityInfoCallable(const Model::GetCelebrityInfoRequest& request) const;
/**
* <p>Gets the name and additional information about a celebrity based on his or
* her Amazon Rekognition ID. The additional information is returned as an array of
* URLs. If there is no additional information about the celebrity, this list is
* empty.</p> <p>For more information, see Recognizing Celebrities in an Image in
* the Amazon Rekognition Developer Guide.</p> <p>This operation requires
* permissions to perform the <code>rekognition:GetCelebrityInfo</code> action.
* </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetCelebrityInfo">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void GetCelebrityInfoAsync(const Model::GetCelebrityInfoRequest& request, const GetCelebrityInfoResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Gets the celebrity recognition results for a Amazon Rekognition Video
* analysis started by <a>StartCelebrityRecognition</a>.</p> <p>Celebrity
* recognition in a video is an asynchronous operation. Analysis is started by a
* call to <a>StartCelebrityRecognition</a> which returns a job identifier
* (<code>JobId</code>). When the celebrity recognition operation finishes, Amazon
* Rekognition Video publishes a completion status to the Amazon Simple
* Notification Service topic registered in the initial call to
* <code>StartCelebrityRecognition</code>. To get the results of the celebrity
* recognition analysis, first check that the status value published to the Amazon
* SNS topic is <code>SUCCEEDED</code>. If so, call
* <code>GetCelebrityDetection</code> and pass the job identifier
* (<code>JobId</code>) from the initial call to
* <code>StartCelebrityDetection</code>. </p> <p>For more information, see Working
* With Stored Videos in the Amazon Rekognition Developer Guide.</p> <p>
* <code>GetCelebrityRecognition</code> returns detected celebrities and the
* time(s) they are detected in an array (<code>Celebrities</code>) of
* <a>CelebrityRecognition</a> objects. Each <code>CelebrityRecognition</code>
* contains information about the celebrity in a <a>CelebrityDetail</a> object and
* the time, <code>Timestamp</code>, the celebrity was detected. </p> <p>
* <code>GetCelebrityRecognition</code> only returns the default facial attributes
* (<code>BoundingBox</code>, <code>Confidence</code>, <code>Landmarks</code>,
* <code>Pose</code>, and <code>Quality</code>). The other facial attributes listed
* in the <code>Face</code> object of the following response syntax are not
* returned. For more information, see FaceDetail in the Amazon Rekognition
* Developer Guide. </p> <p>By default, the <code>Celebrities</code> array
* is sorted by time (milliseconds from the start of the video). You can also sort
* the array by celebrity by specifying the value <code>ID</code> in the
* <code>SortBy</code> input parameter.</p> <p>The <code>CelebrityDetail</code>
* object includes the celebrity identifer and additional information urls. If you
* don't store the additional information urls, you can get them later by calling
* <a>GetCelebrityInfo</a> with the celebrity identifer.</p> <p>No information is
* returned for faces not recognized as celebrities.</p> <p>Use MaxResults
* parameter to limit the number of labels returned. If there are more results than
* specified in <code>MaxResults</code>, the value of <code>NextToken</code> in the
* operation response contains a pagination token for getting the next set of
* results. To get the next page of results, call
* <code>GetCelebrityDetection</code> and populate the <code>NextToken</code>
* request parameter with the token value returned from the previous call to
* <code>GetCelebrityRecognition</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetCelebrityRecognition">AWS
* API Reference</a></p>
*/
virtual Model::GetCelebrityRecognitionOutcome GetCelebrityRecognition(const Model::GetCelebrityRecognitionRequest& request) const;
/**
* <p>Gets the celebrity recognition results for a Amazon Rekognition Video
* analysis started by <a>StartCelebrityRecognition</a>.</p> <p>Celebrity
* recognition in a video is an asynchronous operation. Analysis is started by a
* call to <a>StartCelebrityRecognition</a> which returns a job identifier
* (<code>JobId</code>). When the celebrity recognition operation finishes, Amazon
* Rekognition Video publishes a completion status to the Amazon Simple
* Notification Service topic registered in the initial call to
* <code>StartCelebrityRecognition</code>. To get the results of the celebrity
* recognition analysis, first check that the status value published to the Amazon
* SNS topic is <code>SUCCEEDED</code>. If so, call
* <code>GetCelebrityDetection</code> and pass the job identifier
* (<code>JobId</code>) from the initial call to
* <code>StartCelebrityDetection</code>. </p> <p>For more information, see Working
* With Stored Videos in the Amazon Rekognition Developer Guide.</p> <p>
* <code>GetCelebrityRecognition</code> returns detected celebrities and the
* time(s) they are detected in an array (<code>Celebrities</code>) of
* <a>CelebrityRecognition</a> objects. Each <code>CelebrityRecognition</code>
* contains information about the celebrity in a <a>CelebrityDetail</a> object and
* the time, <code>Timestamp</code>, the celebrity was detected. </p> <p>
* <code>GetCelebrityRecognition</code> only returns the default facial attributes
* (<code>BoundingBox</code>, <code>Confidence</code>, <code>Landmarks</code>,
* <code>Pose</code>, and <code>Quality</code>). The other facial attributes listed
* in the <code>Face</code> object of the following response syntax are not
* returned. For more information, see FaceDetail in the Amazon Rekognition
* Developer Guide. </p> <p>By default, the <code>Celebrities</code> array
* is sorted by time (milliseconds from the start of the video). You can also sort
* the array by celebrity by specifying the value <code>ID</code> in the
* <code>SortBy</code> input parameter.</p> <p>The <code>CelebrityDetail</code>
* object includes the celebrity identifer and additional information urls. If you
* don't store the additional information urls, you can get them later by calling
* <a>GetCelebrityInfo</a> with the celebrity identifer.</p> <p>No information is
* returned for faces not recognized as celebrities.</p> <p>Use MaxResults
* parameter to limit the number of labels returned. If there are more results than
* specified in <code>MaxResults</code>, the value of <code>NextToken</code> in the
* operation response contains a pagination token for getting the next set of
* results. To get the next page of results, call
* <code>GetCelebrityDetection</code> and populate the <code>NextToken</code>
* request parameter with the token value returned from the previous call to
* <code>GetCelebrityRecognition</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetCelebrityRecognition">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::GetCelebrityRecognitionOutcomeCallable GetCelebrityRecognitionCallable(const Model::GetCelebrityRecognitionRequest& request) const;
/**
* <p>Gets the celebrity recognition results for a Amazon Rekognition Video
* analysis started by <a>StartCelebrityRecognition</a>.</p> <p>Celebrity
* recognition in a video is an asynchronous operation. Analysis is started by a
* call to <a>StartCelebrityRecognition</a> which returns a job identifier
* (<code>JobId</code>). When the celebrity recognition operation finishes, Amazon
* Rekognition Video publishes a completion status to the Amazon Simple
* Notification Service topic registered in the initial call to
* <code>StartCelebrityRecognition</code>. To get the results of the celebrity
* recognition analysis, first check that the status value published to the Amazon
* SNS topic is <code>SUCCEEDED</code>. If so, call
* <code>GetCelebrityDetection</code> and pass the job identifier
* (<code>JobId</code>) from the initial call to
* <code>StartCelebrityDetection</code>. </p> <p>For more information, see Working
* With Stored Videos in the Amazon Rekognition Developer Guide.</p> <p>
* <code>GetCelebrityRecognition</code> returns detected celebrities and the
* time(s) they are detected in an array (<code>Celebrities</code>) of
* <a>CelebrityRecognition</a> objects. Each <code>CelebrityRecognition</code>
* contains information about the celebrity in a <a>CelebrityDetail</a> object and
* the time, <code>Timestamp</code>, the celebrity was detected. </p> <p>
* <code>GetCelebrityRecognition</code> only returns the default facial attributes
* (<code>BoundingBox</code>, <code>Confidence</code>, <code>Landmarks</code>,
* <code>Pose</code>, and <code>Quality</code>). The other facial attributes listed
* in the <code>Face</code> object of the following response syntax are not
* returned. For more information, see FaceDetail in the Amazon Rekognition
* Developer Guide. </p> <p>By default, the <code>Celebrities</code> array
* is sorted by time (milliseconds from the start of the video). You can also sort
* the array by celebrity by specifying the value <code>ID</code> in the
* <code>SortBy</code> input parameter.</p> <p>The <code>CelebrityDetail</code>
* object includes the celebrity identifer and additional information urls. If you
* don't store the additional information urls, you can get them later by calling
* <a>GetCelebrityInfo</a> with the celebrity identifer.</p> <p>No information is
* returned for faces not recognized as celebrities.</p> <p>Use MaxResults
* parameter to limit the number of labels returned. If there are more results than
* specified in <code>MaxResults</code>, the value of <code>NextToken</code> in the
* operation response contains a pagination token for getting the next set of
* results. To get the next page of results, call
* <code>GetCelebrityDetection</code> and populate the <code>NextToken</code>
* request parameter with the token value returned from the previous call to
* <code>GetCelebrityRecognition</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetCelebrityRecognition">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void GetCelebrityRecognitionAsync(const Model::GetCelebrityRecognitionRequest& request, const GetCelebrityRecognitionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Gets the unsafe content analysis results for a Amazon Rekognition Video
* analysis started by <a>StartContentModeration</a>.</p> <p>Unsafe content
* analysis of a video is an asynchronous operation. You start analysis by calling
* <a>StartContentModeration</a> which returns a job identifier
* (<code>JobId</code>). When analysis finishes, Amazon Rekognition Video publishes
* a completion status to the Amazon Simple Notification Service topic registered
* in the initial call to <code>StartContentModeration</code>. To get the results
* of the unsafe content analysis, first check that the status value published to
* the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call
* <code>GetContentModeration</code> and pass the job identifier
* (<code>JobId</code>) from the initial call to
* <code>StartContentModeration</code>. </p> <p>For more information, see Working
* with Stored Videos in the Amazon Rekognition Devlopers Guide.</p> <p>
* <code>GetContentModeration</code> returns detected unsafe content labels, and
* the time they are detected, in an array, <code>ModerationLabels</code>, of
* <a>ContentModerationDetection</a> objects. </p> <p>By default, the moderated
* labels are returned sorted by time, in milliseconds from the start of the video.
* You can also sort them by moderated label by specifying <code>NAME</code> for
* the <code>SortBy</code> input parameter. </p> <p>Since video analysis can return
* a large number of results, use the <code>MaxResults</code> parameter to limit
* the number of labels returned in a single call to
* <code>GetContentModeration</code>. If there are more results than specified in
* <code>MaxResults</code>, the value of <code>NextToken</code> in the operation
* response contains a pagination token for getting the next set of results. To get
* the next page of results, call <code>GetContentModeration</code> and populate
* the <code>NextToken</code> request parameter with the value of
* <code>NextToken</code> returned from the previous call to
* <code>GetContentModeration</code>.</p> <p>For more information, see Detecting
* Unsafe Content in the Amazon Rekognition Developer Guide.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetContentModeration">AWS
* API Reference</a></p>
*/
virtual Model::GetContentModerationOutcome GetContentModeration(const Model::GetContentModerationRequest& request) const;
/**
* <p>Gets the unsafe content analysis results for a Amazon Rekognition Video
* analysis started by <a>StartContentModeration</a>.</p> <p>Unsafe content
* analysis of a video is an asynchronous operation. You start analysis by calling
* <a>StartContentModeration</a> which returns a job identifier
* (<code>JobId</code>). When analysis finishes, Amazon Rekognition Video publishes
* a completion status to the Amazon Simple Notification Service topic registered
* in the initial call to <code>StartContentModeration</code>. To get the results
* of the unsafe content analysis, first check that the status value published to
* the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call
* <code>GetContentModeration</code> and pass the job identifier
* (<code>JobId</code>) from the initial call to
* <code>StartContentModeration</code>. </p> <p>For more information, see Working
* with Stored Videos in the Amazon Rekognition Devlopers Guide.</p> <p>
* <code>GetContentModeration</code> returns detected unsafe content labels, and
* the time they are detected, in an array, <code>ModerationLabels</code>, of
* <a>ContentModerationDetection</a> objects. </p> <p>By default, the moderated
* labels are returned sorted by time, in milliseconds from the start of the video.
* You can also sort them by moderated label by specifying <code>NAME</code> for
* the <code>SortBy</code> input parameter. </p> <p>Since video analysis can return
* a large number of results, use the <code>MaxResults</code> parameter to limit
* the number of labels returned in a single call to
* <code>GetContentModeration</code>. If there are more results than specified in
* <code>MaxResults</code>, the value of <code>NextToken</code> in the operation
* response contains a pagination token for getting the next set of results. To get
* the next page of results, call <code>GetContentModeration</code> and populate
* the <code>NextToken</code> request parameter with the value of
* <code>NextToken</code> returned from the previous call to
* <code>GetContentModeration</code>.</p> <p>For more information, see Detecting
* Unsafe Content in the Amazon Rekognition Developer Guide.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetContentModeration">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::GetContentModerationOutcomeCallable GetContentModerationCallable(const Model::GetContentModerationRequest& request) const;
/**
* <p>Gets the unsafe content analysis results for a Amazon Rekognition Video
* analysis started by <a>StartContentModeration</a>.</p> <p>Unsafe content
* analysis of a video is an asynchronous operation. You start analysis by calling
* <a>StartContentModeration</a> which returns a job identifier
* (<code>JobId</code>). When analysis finishes, Amazon Rekognition Video publishes
* a completion status to the Amazon Simple Notification Service topic registered
* in the initial call to <code>StartContentModeration</code>. To get the results
* of the unsafe content analysis, first check that the status value published to
* the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call
* <code>GetContentModeration</code> and pass the job identifier
* (<code>JobId</code>) from the initial call to
* <code>StartContentModeration</code>. </p> <p>For more information, see Working
* with Stored Videos in the Amazon Rekognition Devlopers Guide.</p> <p>
* <code>GetContentModeration</code> returns detected unsafe content labels, and
* the time they are detected, in an array, <code>ModerationLabels</code>, of
* <a>ContentModerationDetection</a> objects. </p> <p>By default, the moderated
* labels are returned sorted by time, in milliseconds from the start of the video.
* You can also sort them by moderated label by specifying <code>NAME</code> for
* the <code>SortBy</code> input parameter. </p> <p>Since video analysis can return
* a large number of results, use the <code>MaxResults</code> parameter to limit
* the number of labels returned in a single call to
* <code>GetContentModeration</code>. If there are more results than specified in
* <code>MaxResults</code>, the value of <code>NextToken</code> in the operation
* response contains a pagination token for getting the next set of results. To get
* the next page of results, call <code>GetContentModeration</code> and populate
* the <code>NextToken</code> request parameter with the value of
* <code>NextToken</code> returned from the previous call to
* <code>GetContentModeration</code>.</p> <p>For more information, see Detecting
* Unsafe Content in the Amazon Rekognition Developer Guide.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetContentModeration">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void GetContentModerationAsync(const Model::GetContentModerationRequest& request, const GetContentModerationResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Gets face detection results for a Amazon Rekognition Video analysis started
* by <a>StartFaceDetection</a>.</p> <p>Face detection with Amazon Rekognition
* Video is an asynchronous operation. You start face detection by calling
* <a>StartFaceDetection</a> which returns a job identifier (<code>JobId</code>).
* When the face detection operation finishes, Amazon Rekognition Video publishes a
* completion status to the Amazon Simple Notification Service topic registered in
* the initial call to <code>StartFaceDetection</code>. To get the results of the
* face detection operation, first check that the status value published to the
* Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetFaceDetection</a>
* and pass the job identifier (<code>JobId</code>) from the initial call to
* <code>StartFaceDetection</code>.</p> <p> <code>GetFaceDetection</code> returns
* an array of detected faces (<code>Faces</code>) sorted by the time the faces
* were detected. </p> <p>Use MaxResults parameter to limit the number of labels
* returned. If there are more results than specified in <code>MaxResults</code>,
* the value of <code>NextToken</code> in the operation response contains a
* pagination token for getting the next set of results. To get the next page of
* results, call <code>GetFaceDetection</code> and populate the
* <code>NextToken</code> request parameter with the token value returned from the
* previous call to <code>GetFaceDetection</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetFaceDetection">AWS
* API Reference</a></p>
*/
virtual Model::GetFaceDetectionOutcome GetFaceDetection(const Model::GetFaceDetectionRequest& request) const;
/**
* <p>Gets face detection results for a Amazon Rekognition Video analysis started
* by <a>StartFaceDetection</a>.</p> <p>Face detection with Amazon Rekognition
* Video is an asynchronous operation. You start face detection by calling
* <a>StartFaceDetection</a> which returns a job identifier (<code>JobId</code>).
* When the face detection operation finishes, Amazon Rekognition Video publishes a
* completion status to the Amazon Simple Notification Service topic registered in
* the initial call to <code>StartFaceDetection</code>. To get the results of the
* face detection operation, first check that the status value published to the
* Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetFaceDetection</a>
* and pass the job identifier (<code>JobId</code>) from the initial call to
* <code>StartFaceDetection</code>.</p> <p> <code>GetFaceDetection</code> returns
* an array of detected faces (<code>Faces</code>) sorted by the time the faces
* were detected. </p> <p>Use MaxResults parameter to limit the number of labels
* returned. If there are more results than specified in <code>MaxResults</code>,
* the value of <code>NextToken</code> in the operation response contains a
* pagination token for getting the next set of results. To get the next page of
* results, call <code>GetFaceDetection</code> and populate the
* <code>NextToken</code> request parameter with the token value returned from the
* previous call to <code>GetFaceDetection</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetFaceDetection">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::GetFaceDetectionOutcomeCallable GetFaceDetectionCallable(const Model::GetFaceDetectionRequest& request) const;
/**
* <p>Gets face detection results for a Amazon Rekognition Video analysis started
* by <a>StartFaceDetection</a>.</p> <p>Face detection with Amazon Rekognition
* Video is an asynchronous operation. You start face detection by calling
* <a>StartFaceDetection</a> which returns a job identifier (<code>JobId</code>).
* When the face detection operation finishes, Amazon Rekognition Video publishes a
* completion status to the Amazon Simple Notification Service topic registered in
* the initial call to <code>StartFaceDetection</code>. To get the results of the
* face detection operation, first check that the status value published to the
* Amazon SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetFaceDetection</a>
* and pass the job identifier (<code>JobId</code>) from the initial call to
* <code>StartFaceDetection</code>.</p> <p> <code>GetFaceDetection</code> returns
* an array of detected faces (<code>Faces</code>) sorted by the time the faces
* were detected. </p> <p>Use MaxResults parameter to limit the number of labels
* returned. If there are more results than specified in <code>MaxResults</code>,
* the value of <code>NextToken</code> in the operation response contains a
* pagination token for getting the next set of results. To get the next page of
* results, call <code>GetFaceDetection</code> and populate the
* <code>NextToken</code> request parameter with the token value returned from the
* previous call to <code>GetFaceDetection</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetFaceDetection">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void GetFaceDetectionAsync(const Model::GetFaceDetectionRequest& request, const GetFaceDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Gets the face search results for Amazon Rekognition Video face search started
* by <a>StartFaceSearch</a>. The search returns faces in a collection that match
* the faces of persons detected in a video. It also includes the time(s) that
* faces are matched in the video.</p> <p>Face search in a video is an asynchronous
* operation. You start face search by calling to <a>StartFaceSearch</a> which
* returns a job identifier (<code>JobId</code>). When the search operation
* finishes, Amazon Rekognition Video publishes a completion status to the Amazon
* Simple Notification Service topic registered in the initial call to
* <code>StartFaceSearch</code>. To get the search results, first check that the
* status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so,
* call <code>GetFaceSearch</code> and pass the job identifier (<code>JobId</code>)
* from the initial call to <code>StartFaceSearch</code>.</p> <p>For more
* information, see Searching Faces in a Collection in the Amazon Rekognition
* Developer Guide.</p> <p>The search results are retured in an array,
* <code>Persons</code>, of <a>PersonMatch</a> objects.
* Each<code>PersonMatch</code> element contains details about the matching faces
* in the input collection, person information (facial attributes, bounding boxes,
* and person identifer) for the matched person, and the time the person was
* matched in the video.</p> <p> <code>GetFaceSearch</code> only returns the
* default facial attributes (<code>BoundingBox</code>, <code>Confidence</code>,
* <code>Landmarks</code>, <code>Pose</code>, and <code>Quality</code>). The other
* facial attributes listed in the <code>Face</code> object of the following
* response syntax are not returned. For more information, see FaceDetail in the
* Amazon Rekognition Developer Guide. </p> <p>By default, the
* <code>Persons</code> array is sorted by the time, in milliseconds from the start
* of the video, persons are matched. You can also sort by persons by specifying
* <code>INDEX</code> for the <code>SORTBY</code> input parameter.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetFaceSearch">AWS
* API Reference</a></p>
*/
virtual Model::GetFaceSearchOutcome GetFaceSearch(const Model::GetFaceSearchRequest& request) const;
/**
* <p>Gets the face search results for Amazon Rekognition Video face search started
* by <a>StartFaceSearch</a>. The search returns faces in a collection that match
* the faces of persons detected in a video. It also includes the time(s) that
* faces are matched in the video.</p> <p>Face search in a video is an asynchronous
* operation. You start face search by calling to <a>StartFaceSearch</a> which
* returns a job identifier (<code>JobId</code>). When the search operation
* finishes, Amazon Rekognition Video publishes a completion status to the Amazon
* Simple Notification Service topic registered in the initial call to
* <code>StartFaceSearch</code>. To get the search results, first check that the
* status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so,
* call <code>GetFaceSearch</code> and pass the job identifier (<code>JobId</code>)
* from the initial call to <code>StartFaceSearch</code>.</p> <p>For more
* information, see Searching Faces in a Collection in the Amazon Rekognition
* Developer Guide.</p> <p>The search results are retured in an array,
* <code>Persons</code>, of <a>PersonMatch</a> objects.
* Each<code>PersonMatch</code> element contains details about the matching faces
* in the input collection, person information (facial attributes, bounding boxes,
* and person identifer) for the matched person, and the time the person was
* matched in the video.</p> <p> <code>GetFaceSearch</code> only returns the
* default facial attributes (<code>BoundingBox</code>, <code>Confidence</code>,
* <code>Landmarks</code>, <code>Pose</code>, and <code>Quality</code>). The other
* facial attributes listed in the <code>Face</code> object of the following
* response syntax are not returned. For more information, see FaceDetail in the
* Amazon Rekognition Developer Guide. </p> <p>By default, the
* <code>Persons</code> array is sorted by the time, in milliseconds from the start
* of the video, persons are matched. You can also sort by persons by specifying
* <code>INDEX</code> for the <code>SORTBY</code> input parameter.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetFaceSearch">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::GetFaceSearchOutcomeCallable GetFaceSearchCallable(const Model::GetFaceSearchRequest& request) const;
/**
* <p>Gets the face search results for Amazon Rekognition Video face search started
* by <a>StartFaceSearch</a>. The search returns faces in a collection that match
* the faces of persons detected in a video. It also includes the time(s) that
* faces are matched in the video.</p> <p>Face search in a video is an asynchronous
* operation. You start face search by calling to <a>StartFaceSearch</a> which
* returns a job identifier (<code>JobId</code>). When the search operation
* finishes, Amazon Rekognition Video publishes a completion status to the Amazon
* Simple Notification Service topic registered in the initial call to
* <code>StartFaceSearch</code>. To get the search results, first check that the
* status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so,
* call <code>GetFaceSearch</code> and pass the job identifier (<code>JobId</code>)
* from the initial call to <code>StartFaceSearch</code>.</p> <p>For more
* information, see Searching Faces in a Collection in the Amazon Rekognition
* Developer Guide.</p> <p>The search results are retured in an array,
* <code>Persons</code>, of <a>PersonMatch</a> objects.
* Each<code>PersonMatch</code> element contains details about the matching faces
* in the input collection, person information (facial attributes, bounding boxes,
* and person identifer) for the matched person, and the time the person was
* matched in the video.</p> <p> <code>GetFaceSearch</code> only returns the
* default facial attributes (<code>BoundingBox</code>, <code>Confidence</code>,
* <code>Landmarks</code>, <code>Pose</code>, and <code>Quality</code>). The other
* facial attributes listed in the <code>Face</code> object of the following
* response syntax are not returned. For more information, see FaceDetail in the
* Amazon Rekognition Developer Guide. </p> <p>By default, the
* <code>Persons</code> array is sorted by the time, in milliseconds from the start
* of the video, persons are matched. You can also sort by persons by specifying
* <code>INDEX</code> for the <code>SORTBY</code> input parameter.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetFaceSearch">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void GetFaceSearchAsync(const Model::GetFaceSearchRequest& request, const GetFaceSearchResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Gets the label detection results of a Amazon Rekognition Video analysis
* started by <a>StartLabelDetection</a>. </p> <p>The label detection operation is
* started by a call to <a>StartLabelDetection</a> which returns a job identifier
* (<code>JobId</code>). When the label detection operation finishes, Amazon
* Rekognition publishes a completion status to the Amazon Simple Notification
* Service topic registered in the initial call to
* <code>StartlabelDetection</code>. To get the results of the label detection
* operation, first check that the status value published to the Amazon SNS topic
* is <code>SUCCEEDED</code>. If so, call <a>GetLabelDetection</a> and pass the job
* identifier (<code>JobId</code>) from the initial call to
* <code>StartLabelDetection</code>.</p> <p> <code>GetLabelDetection</code> returns
* an array of detected labels (<code>Labels</code>) sorted by the time the labels
* were detected. You can also sort by the label name by specifying
* <code>NAME</code> for the <code>SortBy</code> input parameter.</p> <p>The labels
* returned include the label name, the percentage confidence in the accuracy of
* the detected label, and the time the label was detected in the video.</p> <p>The
* returned labels also include bounding box information for common objects, a
* hierarchical taxonomy of detected labels, and the version of the label model
* used for detection.</p> <p>Use MaxResults parameter to limit the number of
* labels returned. If there are more results than specified in
* <code>MaxResults</code>, the value of <code>NextToken</code> in the operation
* response contains a pagination token for getting the next set of results. To get
* the next page of results, call <code>GetlabelDetection</code> and populate the
* <code>NextToken</code> request parameter with the token value returned from the
* previous call to <code>GetLabelDetection</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetLabelDetection">AWS
* API Reference</a></p>
*/
virtual Model::GetLabelDetectionOutcome GetLabelDetection(const Model::GetLabelDetectionRequest& request) const;
/**
* <p>Gets the label detection results of a Amazon Rekognition Video analysis
* started by <a>StartLabelDetection</a>. </p> <p>The label detection operation is
* started by a call to <a>StartLabelDetection</a> which returns a job identifier
* (<code>JobId</code>). When the label detection operation finishes, Amazon
* Rekognition publishes a completion status to the Amazon Simple Notification
* Service topic registered in the initial call to
* <code>StartlabelDetection</code>. To get the results of the label detection
* operation, first check that the status value published to the Amazon SNS topic
* is <code>SUCCEEDED</code>. If so, call <a>GetLabelDetection</a> and pass the job
* identifier (<code>JobId</code>) from the initial call to
* <code>StartLabelDetection</code>.</p> <p> <code>GetLabelDetection</code> returns
* an array of detected labels (<code>Labels</code>) sorted by the time the labels
* were detected. You can also sort by the label name by specifying
* <code>NAME</code> for the <code>SortBy</code> input parameter.</p> <p>The labels
* returned include the label name, the percentage confidence in the accuracy of
* the detected label, and the time the label was detected in the video.</p> <p>The
* returned labels also include bounding box information for common objects, a
* hierarchical taxonomy of detected labels, and the version of the label model
* used for detection.</p> <p>Use MaxResults parameter to limit the number of
* labels returned. If there are more results than specified in
* <code>MaxResults</code>, the value of <code>NextToken</code> in the operation
* response contains a pagination token for getting the next set of results. To get
* the next page of results, call <code>GetlabelDetection</code> and populate the
* <code>NextToken</code> request parameter with the token value returned from the
* previous call to <code>GetLabelDetection</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetLabelDetection">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::GetLabelDetectionOutcomeCallable GetLabelDetectionCallable(const Model::GetLabelDetectionRequest& request) const;
/**
* <p>Gets the label detection results of a Amazon Rekognition Video analysis
* started by <a>StartLabelDetection</a>. </p> <p>The label detection operation is
* started by a call to <a>StartLabelDetection</a> which returns a job identifier
* (<code>JobId</code>). When the label detection operation finishes, Amazon
* Rekognition publishes a completion status to the Amazon Simple Notification
* Service topic registered in the initial call to
* <code>StartlabelDetection</code>. To get the results of the label detection
* operation, first check that the status value published to the Amazon SNS topic
* is <code>SUCCEEDED</code>. If so, call <a>GetLabelDetection</a> and pass the job
* identifier (<code>JobId</code>) from the initial call to
* <code>StartLabelDetection</code>.</p> <p> <code>GetLabelDetection</code> returns
* an array of detected labels (<code>Labels</code>) sorted by the time the labels
* were detected. You can also sort by the label name by specifying
* <code>NAME</code> for the <code>SortBy</code> input parameter.</p> <p>The labels
* returned include the label name, the percentage confidence in the accuracy of
* the detected label, and the time the label was detected in the video.</p> <p>The
* returned labels also include bounding box information for common objects, a
* hierarchical taxonomy of detected labels, and the version of the label model
* used for detection.</p> <p>Use MaxResults parameter to limit the number of
* labels returned. If there are more results than specified in
* <code>MaxResults</code>, the value of <code>NextToken</code> in the operation
* response contains a pagination token for getting the next set of results. To get
* the next page of results, call <code>GetlabelDetection</code> and populate the
* <code>NextToken</code> request parameter with the token value returned from the
* previous call to <code>GetLabelDetection</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetLabelDetection">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void GetLabelDetectionAsync(const Model::GetLabelDetectionRequest& request, const GetLabelDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Gets the path tracking results of a Amazon Rekognition Video analysis started
* by <a>StartPersonTracking</a>.</p> <p>The person path tracking operation is
* started by a call to <code>StartPersonTracking</code> which returns a job
* identifier (<code>JobId</code>). When the operation finishes, Amazon Rekognition
* Video publishes a completion status to the Amazon Simple Notification Service
* topic registered in the initial call to <code>StartPersonTracking</code>.</p>
* <p>To get the results of the person path tracking operation, first check that
* the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If
* so, call <a>GetPersonTracking</a> and pass the job identifier
* (<code>JobId</code>) from the initial call to
* <code>StartPersonTracking</code>.</p> <p> <code>GetPersonTracking</code> returns
* an array, <code>Persons</code>, of tracked persons and the time(s) their paths
* were tracked in the video. </p> <p> <code>GetPersonTracking</code> only
* returns the default facial attributes (<code>BoundingBox</code>,
* <code>Confidence</code>, <code>Landmarks</code>, <code>Pose</code>, and
* <code>Quality</code>). The other facial attributes listed in the
* <code>Face</code> object of the following response syntax are not returned. </p>
* <p>For more information, see FaceDetail in the Amazon Rekognition Developer
* Guide.</p> <p>By default, the array is sorted by the time(s) a person's
* path is tracked in the video. You can sort by tracked persons by specifying
* <code>INDEX</code> for the <code>SortBy</code> input parameter.</p> <p>Use the
* <code>MaxResults</code> parameter to limit the number of items returned. If
* there are more results than specified in <code>MaxResults</code>, the value of
* <code>NextToken</code> in the operation response contains a pagination token for
* getting the next set of results. To get the next page of results, call
* <code>GetPersonTracking</code> and populate the <code>NextToken</code> request
* parameter with the token value returned from the previous call to
* <code>GetPersonTracking</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetPersonTracking">AWS
* API Reference</a></p>
*/
virtual Model::GetPersonTrackingOutcome GetPersonTracking(const Model::GetPersonTrackingRequest& request) const;
/**
* <p>Gets the path tracking results of a Amazon Rekognition Video analysis started
* by <a>StartPersonTracking</a>.</p> <p>The person path tracking operation is
* started by a call to <code>StartPersonTracking</code> which returns a job
* identifier (<code>JobId</code>). When the operation finishes, Amazon Rekognition
* Video publishes a completion status to the Amazon Simple Notification Service
* topic registered in the initial call to <code>StartPersonTracking</code>.</p>
* <p>To get the results of the person path tracking operation, first check that
* the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If
* so, call <a>GetPersonTracking</a> and pass the job identifier
* (<code>JobId</code>) from the initial call to
* <code>StartPersonTracking</code>.</p> <p> <code>GetPersonTracking</code> returns
* an array, <code>Persons</code>, of tracked persons and the time(s) their paths
* were tracked in the video. </p> <p> <code>GetPersonTracking</code> only
* returns the default facial attributes (<code>BoundingBox</code>,
* <code>Confidence</code>, <code>Landmarks</code>, <code>Pose</code>, and
* <code>Quality</code>). The other facial attributes listed in the
* <code>Face</code> object of the following response syntax are not returned. </p>
* <p>For more information, see FaceDetail in the Amazon Rekognition Developer
* Guide.</p> <p>By default, the array is sorted by the time(s) a person's
* path is tracked in the video. You can sort by tracked persons by specifying
* <code>INDEX</code> for the <code>SortBy</code> input parameter.</p> <p>Use the
* <code>MaxResults</code> parameter to limit the number of items returned. If
* there are more results than specified in <code>MaxResults</code>, the value of
* <code>NextToken</code> in the operation response contains a pagination token for
* getting the next set of results. To get the next page of results, call
* <code>GetPersonTracking</code> and populate the <code>NextToken</code> request
* parameter with the token value returned from the previous call to
* <code>GetPersonTracking</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetPersonTracking">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::GetPersonTrackingOutcomeCallable GetPersonTrackingCallable(const Model::GetPersonTrackingRequest& request) const;
/**
* <p>Gets the path tracking results of a Amazon Rekognition Video analysis started
* by <a>StartPersonTracking</a>.</p> <p>The person path tracking operation is
* started by a call to <code>StartPersonTracking</code> which returns a job
* identifier (<code>JobId</code>). When the operation finishes, Amazon Rekognition
* Video publishes a completion status to the Amazon Simple Notification Service
* topic registered in the initial call to <code>StartPersonTracking</code>.</p>
* <p>To get the results of the person path tracking operation, first check that
* the status value published to the Amazon SNS topic is <code>SUCCEEDED</code>. If
* so, call <a>GetPersonTracking</a> and pass the job identifier
* (<code>JobId</code>) from the initial call to
* <code>StartPersonTracking</code>.</p> <p> <code>GetPersonTracking</code> returns
* an array, <code>Persons</code>, of tracked persons and the time(s) their paths
* were tracked in the video. </p> <p> <code>GetPersonTracking</code> only
* returns the default facial attributes (<code>BoundingBox</code>,
* <code>Confidence</code>, <code>Landmarks</code>, <code>Pose</code>, and
* <code>Quality</code>). The other facial attributes listed in the
* <code>Face</code> object of the following response syntax are not returned. </p>
* <p>For more information, see FaceDetail in the Amazon Rekognition Developer
* Guide.</p> <p>By default, the array is sorted by the time(s) a person's
* path is tracked in the video. You can sort by tracked persons by specifying
* <code>INDEX</code> for the <code>SortBy</code> input parameter.</p> <p>Use the
* <code>MaxResults</code> parameter to limit the number of items returned. If
* there are more results than specified in <code>MaxResults</code>, the value of
* <code>NextToken</code> in the operation response contains a pagination token for
* getting the next set of results. To get the next page of results, call
* <code>GetPersonTracking</code> and populate the <code>NextToken</code> request
* parameter with the token value returned from the previous call to
* <code>GetPersonTracking</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetPersonTracking">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void GetPersonTrackingAsync(const Model::GetPersonTrackingRequest& request, const GetPersonTrackingResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Gets the segment detection results of a Amazon Rekognition Video analysis
* started by <a>StartSegmentDetection</a>.</p> <p>Segment detection with Amazon
* Rekognition Video is an asynchronous operation. You start segment detection by
* calling <a>StartSegmentDetection</a> which returns a job identifier
* (<code>JobId</code>). When the segment detection operation finishes, Amazon
* Rekognition publishes a completion status to the Amazon Simple Notification
* Service topic registered in the initial call to
* <code>StartSegmentDetection</code>. To get the results of the segment detection
* operation, first check that the status value published to the Amazon SNS topic
* is <code>SUCCEEDED</code>. if so, call <code>GetSegmentDetection</code> and pass
* the job identifier (<code>JobId</code>) from the initial call of
* <code>StartSegmentDetection</code>.</p> <p> <code>GetSegmentDetection</code>
* returns detected segments in an array (<code>Segments</code>) of
* <a>SegmentDetection</a> objects. <code>Segments</code> is sorted by the segment
* types specified in the <code>SegmentTypes</code> input parameter of
* <code>StartSegmentDetection</code>. Each element of the array includes the
* detected segment, the precentage confidence in the acuracy of the detected
* segment, the type of the segment, and the frame in which the segment was
* detected.</p> <p>Use <code>SelectedSegmentTypes</code> to find out the type of
* segment detection requested in the call to
* <code>StartSegmentDetection</code>.</p> <p>Use the <code>MaxResults</code>
* parameter to limit the number of segment detections returned. If there are more
* results than specified in <code>MaxResults</code>, the value of
* <code>NextToken</code> in the operation response contains a pagination token for
* getting the next set of results. To get the next page of results, call
* <code>GetSegmentDetection</code> and populate the <code>NextToken</code> request
* parameter with the token value returned from the previous call to
* <code>GetSegmentDetection</code>.</p> <p>For more information, see Detecting
* Video Segments in Stored Video in the Amazon Rekognition Developer
* Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetSegmentDetection">AWS
* API Reference</a></p>
*/
virtual Model::GetSegmentDetectionOutcome GetSegmentDetection(const Model::GetSegmentDetectionRequest& request) const;
/**
* <p>Gets the segment detection results of a Amazon Rekognition Video analysis
* started by <a>StartSegmentDetection</a>.</p> <p>Segment detection with Amazon
* Rekognition Video is an asynchronous operation. You start segment detection by
* calling <a>StartSegmentDetection</a> which returns a job identifier
* (<code>JobId</code>). When the segment detection operation finishes, Amazon
* Rekognition publishes a completion status to the Amazon Simple Notification
* Service topic registered in the initial call to
* <code>StartSegmentDetection</code>. To get the results of the segment detection
* operation, first check that the status value published to the Amazon SNS topic
* is <code>SUCCEEDED</code>. if so, call <code>GetSegmentDetection</code> and pass
* the job identifier (<code>JobId</code>) from the initial call of
* <code>StartSegmentDetection</code>.</p> <p> <code>GetSegmentDetection</code>
* returns detected segments in an array (<code>Segments</code>) of
* <a>SegmentDetection</a> objects. <code>Segments</code> is sorted by the segment
* types specified in the <code>SegmentTypes</code> input parameter of
* <code>StartSegmentDetection</code>. Each element of the array includes the
* detected segment, the precentage confidence in the acuracy of the detected
* segment, the type of the segment, and the frame in which the segment was
* detected.</p> <p>Use <code>SelectedSegmentTypes</code> to find out the type of
* segment detection requested in the call to
* <code>StartSegmentDetection</code>.</p> <p>Use the <code>MaxResults</code>
* parameter to limit the number of segment detections returned. If there are more
* results than specified in <code>MaxResults</code>, the value of
* <code>NextToken</code> in the operation response contains a pagination token for
* getting the next set of results. To get the next page of results, call
* <code>GetSegmentDetection</code> and populate the <code>NextToken</code> request
* parameter with the token value returned from the previous call to
* <code>GetSegmentDetection</code>.</p> <p>For more information, see Detecting
* Video Segments in Stored Video in the Amazon Rekognition Developer
* Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetSegmentDetection">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::GetSegmentDetectionOutcomeCallable GetSegmentDetectionCallable(const Model::GetSegmentDetectionRequest& request) const;
/**
* <p>Gets the segment detection results of a Amazon Rekognition Video analysis
* started by <a>StartSegmentDetection</a>.</p> <p>Segment detection with Amazon
* Rekognition Video is an asynchronous operation. You start segment detection by
* calling <a>StartSegmentDetection</a> which returns a job identifier
* (<code>JobId</code>). When the segment detection operation finishes, Amazon
* Rekognition publishes a completion status to the Amazon Simple Notification
* Service topic registered in the initial call to
* <code>StartSegmentDetection</code>. To get the results of the segment detection
* operation, first check that the status value published to the Amazon SNS topic
* is <code>SUCCEEDED</code>. if so, call <code>GetSegmentDetection</code> and pass
* the job identifier (<code>JobId</code>) from the initial call of
* <code>StartSegmentDetection</code>.</p> <p> <code>GetSegmentDetection</code>
* returns detected segments in an array (<code>Segments</code>) of
* <a>SegmentDetection</a> objects. <code>Segments</code> is sorted by the segment
* types specified in the <code>SegmentTypes</code> input parameter of
* <code>StartSegmentDetection</code>. Each element of the array includes the
* detected segment, the precentage confidence in the acuracy of the detected
* segment, the type of the segment, and the frame in which the segment was
* detected.</p> <p>Use <code>SelectedSegmentTypes</code> to find out the type of
* segment detection requested in the call to
* <code>StartSegmentDetection</code>.</p> <p>Use the <code>MaxResults</code>
* parameter to limit the number of segment detections returned. If there are more
* results than specified in <code>MaxResults</code>, the value of
* <code>NextToken</code> in the operation response contains a pagination token for
* getting the next set of results. To get the next page of results, call
* <code>GetSegmentDetection</code> and populate the <code>NextToken</code> request
* parameter with the token value returned from the previous call to
* <code>GetSegmentDetection</code>.</p> <p>For more information, see Detecting
* Video Segments in Stored Video in the Amazon Rekognition Developer
* Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetSegmentDetection">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void GetSegmentDetectionAsync(const Model::GetSegmentDetectionRequest& request, const GetSegmentDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Gets the text detection results of a Amazon Rekognition Video analysis
* started by <a>StartTextDetection</a>.</p> <p>Text detection with Amazon
* Rekognition Video is an asynchronous operation. You start text detection by
* calling <a>StartTextDetection</a> which returns a job identifier
* (<code>JobId</code>) When the text detection operation finishes, Amazon
* Rekognition publishes a completion status to the Amazon Simple Notification
* Service topic registered in the initial call to <code>StartTextDetection</code>.
* To get the results of the text detection operation, first check that the status
* value published to the Amazon SNS topic is <code>SUCCEEDED</code>. if so, call
* <code>GetTextDetection</code> and pass the job identifier (<code>JobId</code>)
* from the initial call of <code>StartLabelDetection</code>.</p> <p>
* <code>GetTextDetection</code> returns an array of detected text
* (<code>TextDetections</code>) sorted by the time the text was detected, up to 50
* words per frame of video.</p> <p>Each element of the array includes the detected
* text, the precentage confidence in the acuracy of the detected text, the time
* the text was detected, bounding box information for where the text was located,
* and unique identifiers for words and their lines.</p> <p>Use MaxResults
* parameter to limit the number of text detections returned. If there are more
* results than specified in <code>MaxResults</code>, the value of
* <code>NextToken</code> in the operation response contains a pagination token for
* getting the next set of results. To get the next page of results, call
* <code>GetTextDetection</code> and populate the <code>NextToken</code> request
* parameter with the token value returned from the previous call to
* <code>GetTextDetection</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetTextDetection">AWS
* API Reference</a></p>
*/
virtual Model::GetTextDetectionOutcome GetTextDetection(const Model::GetTextDetectionRequest& request) const;
/**
* <p>Gets the text detection results of a Amazon Rekognition Video analysis
* started by <a>StartTextDetection</a>.</p> <p>Text detection with Amazon
* Rekognition Video is an asynchronous operation. You start text detection by
* calling <a>StartTextDetection</a> which returns a job identifier
* (<code>JobId</code>) When the text detection operation finishes, Amazon
* Rekognition publishes a completion status to the Amazon Simple Notification
* Service topic registered in the initial call to <code>StartTextDetection</code>.
* To get the results of the text detection operation, first check that the status
* value published to the Amazon SNS topic is <code>SUCCEEDED</code>. if so, call
* <code>GetTextDetection</code> and pass the job identifier (<code>JobId</code>)
* from the initial call of <code>StartLabelDetection</code>.</p> <p>
* <code>GetTextDetection</code> returns an array of detected text
* (<code>TextDetections</code>) sorted by the time the text was detected, up to 50
* words per frame of video.</p> <p>Each element of the array includes the detected
* text, the precentage confidence in the acuracy of the detected text, the time
* the text was detected, bounding box information for where the text was located,
* and unique identifiers for words and their lines.</p> <p>Use MaxResults
* parameter to limit the number of text detections returned. If there are more
* results than specified in <code>MaxResults</code>, the value of
* <code>NextToken</code> in the operation response contains a pagination token for
* getting the next set of results. To get the next page of results, call
* <code>GetTextDetection</code> and populate the <code>NextToken</code> request
* parameter with the token value returned from the previous call to
* <code>GetTextDetection</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetTextDetection">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::GetTextDetectionOutcomeCallable GetTextDetectionCallable(const Model::GetTextDetectionRequest& request) const;
/**
* <p>Gets the text detection results of a Amazon Rekognition Video analysis
* started by <a>StartTextDetection</a>.</p> <p>Text detection with Amazon
* Rekognition Video is an asynchronous operation. You start text detection by
* calling <a>StartTextDetection</a> which returns a job identifier
* (<code>JobId</code>) When the text detection operation finishes, Amazon
* Rekognition publishes a completion status to the Amazon Simple Notification
* Service topic registered in the initial call to <code>StartTextDetection</code>.
* To get the results of the text detection operation, first check that the status
* value published to the Amazon SNS topic is <code>SUCCEEDED</code>. if so, call
* <code>GetTextDetection</code> and pass the job identifier (<code>JobId</code>)
* from the initial call of <code>StartLabelDetection</code>.</p> <p>
* <code>GetTextDetection</code> returns an array of detected text
* (<code>TextDetections</code>) sorted by the time the text was detected, up to 50
* words per frame of video.</p> <p>Each element of the array includes the detected
* text, the precentage confidence in the acuracy of the detected text, the time
* the text was detected, bounding box information for where the text was located,
* and unique identifiers for words and their lines.</p> <p>Use MaxResults
* parameter to limit the number of text detections returned. If there are more
* results than specified in <code>MaxResults</code>, the value of
* <code>NextToken</code> in the operation response contains a pagination token for
* getting the next set of results. To get the next page of results, call
* <code>GetTextDetection</code> and populate the <code>NextToken</code> request
* parameter with the token value returned from the previous call to
* <code>GetTextDetection</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/GetTextDetection">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void GetTextDetectionAsync(const Model::GetTextDetectionRequest& request, const GetTextDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Detects faces in the input image and adds them to the specified collection.
* </p> <p>Amazon Rekognition doesn't save the actual faces that are detected.
* Instead, the underlying detection algorithm first detects the faces in the input
* image. For each face, the algorithm extracts facial features into a feature
* vector, and stores it in the backend database. Amazon Rekognition uses feature
* vectors when it performs face match and search operations using the
* <a>SearchFaces</a> and <a>SearchFacesByImage</a> operations.</p> <p>For more
* information, see Adding Faces to a Collection in the Amazon Rekognition
* Developer Guide.</p> <p>To get the number of faces in a collection, call
* <a>DescribeCollection</a>. </p> <p>If you're using version 1.0 of the face
* detection model, <code>IndexFaces</code> indexes the 15 largest faces in the
* input image. Later versions of the face detection model index the 100 largest
* faces in the input image. </p> <p>If you're using version 4 or later of the face
* model, image orientation information is not returned in the
* <code>OrientationCorrection</code> field. </p> <p>To determine which version of
* the model you're using, call <a>DescribeCollection</a> and supply the collection
* ID. You can also get the model version from the value of
* <code>FaceModelVersion</code> in the response from <code>IndexFaces</code> </p>
* <p>For more information, see Model Versioning in the Amazon Rekognition
* Developer Guide.</p> <p>If you provide the optional <code>ExternalImageId</code>
* for the input image you provided, Amazon Rekognition associates this ID with all
* faces that it detects. When you call the <a>ListFaces</a> operation, the
* response returns the external ID. You can use this external image ID to create a
* client-side index to associate the faces with each image. You can then use the
* index to find all faces in an image.</p> <p>You can specify the maximum number
* of faces to index with the <code>MaxFaces</code> input parameter. This is useful
* when you want to index the largest faces in an image and don't want to index
* smaller faces, such as those belonging to people standing in the background.</p>
* <p>The <code>QualityFilter</code> input parameter allows you to filter out
* detected faces that dont meet a required quality bar. The quality bar is based
* on a variety of common use cases. By default, <code>IndexFaces</code> chooses
* the quality bar that's used to filter faces. You can also explicitly choose the
* quality bar. Use <code>QualityFilter</code>, to set the quality bar by
* specifying <code>LOW</code>, <code>MEDIUM</code>, or <code>HIGH</code>. If you
* do not want to filter detected faces, specify <code>NONE</code>. </p>
* <p>To use quality filtering, you need a collection associated with version 3 of
* the face model or higher. To get the version of the face model associated with a
* collection, call <a>DescribeCollection</a>. </p> <p>Information about
* faces detected in an image, but not indexed, is returned in an array of
* <a>UnindexedFace</a> objects, <code>UnindexedFaces</code>. Faces aren't indexed
* for reasons such as:</p> <ul> <li> <p>The number of faces detected exceeds the
* value of the <code>MaxFaces</code> request parameter.</p> </li> <li> <p>The face
* is too small compared to the image dimensions.</p> </li> <li> <p>The face is too
* blurry.</p> </li> <li> <p>The image is too dark.</p> </li> <li> <p>The face has
* an extreme pose.</p> </li> <li> <p>The face doesnt have enough detail to be
* suitable for face search.</p> </li> </ul> <p>In response, the
* <code>IndexFaces</code> operation returns an array of metadata for all detected
* faces, <code>FaceRecords</code>. This includes: </p> <ul> <li> <p>The bounding
* box, <code>BoundingBox</code>, of the detected face. </p> </li> <li> <p>A
* confidence value, <code>Confidence</code>, which indicates the confidence that
* the bounding box contains a face.</p> </li> <li> <p>A face ID,
* <code>FaceId</code>, assigned by the service for each face that's detected and
* stored.</p> </li> <li> <p>An image ID, <code>ImageId</code>, assigned by the
* service for the input image.</p> </li> </ul> <p>If you request all facial
* attributes (by using the <code>detectionAttributes</code> parameter), Amazon
* Rekognition returns detailed facial attributes, such as facial landmarks (for
* example, location of eye and mouth) and other facial attributes. If you provide
* the same image, specify the same collection, and use the same external ID in the
* <code>IndexFaces</code> operation, Amazon Rekognition doesn't save duplicate
* face metadata.</p> <p/> <p>The input image is passed either as base64-encoded
* image bytes, or as a reference to an image in an Amazon S3 bucket. If you use
* the AWS CLI to call Amazon Rekognition operations, passing image bytes isn't
* supported. The image must be formatted as a PNG or JPEG file. </p> <p>This
* operation requires permissions to perform the
* <code>rekognition:IndexFaces</code> action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/IndexFaces">AWS
* API Reference</a></p>
*/
virtual Model::IndexFacesOutcome IndexFaces(const Model::IndexFacesRequest& request) const;
/**
* <p>Detects faces in the input image and adds them to the specified collection.
* </p> <p>Amazon Rekognition doesn't save the actual faces that are detected.
* Instead, the underlying detection algorithm first detects the faces in the input
* image. For each face, the algorithm extracts facial features into a feature
* vector, and stores it in the backend database. Amazon Rekognition uses feature
* vectors when it performs face match and search operations using the
* <a>SearchFaces</a> and <a>SearchFacesByImage</a> operations.</p> <p>For more
* information, see Adding Faces to a Collection in the Amazon Rekognition
* Developer Guide.</p> <p>To get the number of faces in a collection, call
* <a>DescribeCollection</a>. </p> <p>If you're using version 1.0 of the face
* detection model, <code>IndexFaces</code> indexes the 15 largest faces in the
* input image. Later versions of the face detection model index the 100 largest
* faces in the input image. </p> <p>If you're using version 4 or later of the face
* model, image orientation information is not returned in the
* <code>OrientationCorrection</code> field. </p> <p>To determine which version of
* the model you're using, call <a>DescribeCollection</a> and supply the collection
* ID. You can also get the model version from the value of
* <code>FaceModelVersion</code> in the response from <code>IndexFaces</code> </p>
* <p>For more information, see Model Versioning in the Amazon Rekognition
* Developer Guide.</p> <p>If you provide the optional <code>ExternalImageId</code>
* for the input image you provided, Amazon Rekognition associates this ID with all
* faces that it detects. When you call the <a>ListFaces</a> operation, the
* response returns the external ID. You can use this external image ID to create a
* client-side index to associate the faces with each image. You can then use the
* index to find all faces in an image.</p> <p>You can specify the maximum number
* of faces to index with the <code>MaxFaces</code> input parameter. This is useful
* when you want to index the largest faces in an image and don't want to index
* smaller faces, such as those belonging to people standing in the background.</p>
* <p>The <code>QualityFilter</code> input parameter allows you to filter out
* detected faces that dont meet a required quality bar. The quality bar is based
* on a variety of common use cases. By default, <code>IndexFaces</code> chooses
* the quality bar that's used to filter faces. You can also explicitly choose the
* quality bar. Use <code>QualityFilter</code>, to set the quality bar by
* specifying <code>LOW</code>, <code>MEDIUM</code>, or <code>HIGH</code>. If you
* do not want to filter detected faces, specify <code>NONE</code>. </p>
* <p>To use quality filtering, you need a collection associated with version 3 of
* the face model or higher. To get the version of the face model associated with a
* collection, call <a>DescribeCollection</a>. </p> <p>Information about
* faces detected in an image, but not indexed, is returned in an array of
* <a>UnindexedFace</a> objects, <code>UnindexedFaces</code>. Faces aren't indexed
* for reasons such as:</p> <ul> <li> <p>The number of faces detected exceeds the
* value of the <code>MaxFaces</code> request parameter.</p> </li> <li> <p>The face
* is too small compared to the image dimensions.</p> </li> <li> <p>The face is too
* blurry.</p> </li> <li> <p>The image is too dark.</p> </li> <li> <p>The face has
* an extreme pose.</p> </li> <li> <p>The face doesnt have enough detail to be
* suitable for face search.</p> </li> </ul> <p>In response, the
* <code>IndexFaces</code> operation returns an array of metadata for all detected
* faces, <code>FaceRecords</code>. This includes: </p> <ul> <li> <p>The bounding
* box, <code>BoundingBox</code>, of the detected face. </p> </li> <li> <p>A
* confidence value, <code>Confidence</code>, which indicates the confidence that
* the bounding box contains a face.</p> </li> <li> <p>A face ID,
* <code>FaceId</code>, assigned by the service for each face that's detected and
* stored.</p> </li> <li> <p>An image ID, <code>ImageId</code>, assigned by the
* service for the input image.</p> </li> </ul> <p>If you request all facial
* attributes (by using the <code>detectionAttributes</code> parameter), Amazon
* Rekognition returns detailed facial attributes, such as facial landmarks (for
* example, location of eye and mouth) and other facial attributes. If you provide
* the same image, specify the same collection, and use the same external ID in the
* <code>IndexFaces</code> operation, Amazon Rekognition doesn't save duplicate
* face metadata.</p> <p/> <p>The input image is passed either as base64-encoded
* image bytes, or as a reference to an image in an Amazon S3 bucket. If you use
* the AWS CLI to call Amazon Rekognition operations, passing image bytes isn't
* supported. The image must be formatted as a PNG or JPEG file. </p> <p>This
* operation requires permissions to perform the
* <code>rekognition:IndexFaces</code> action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/IndexFaces">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::IndexFacesOutcomeCallable IndexFacesCallable(const Model::IndexFacesRequest& request) const;
/**
* <p>Detects faces in the input image and adds them to the specified collection.
* </p> <p>Amazon Rekognition doesn't save the actual faces that are detected.
* Instead, the underlying detection algorithm first detects the faces in the input
* image. For each face, the algorithm extracts facial features into a feature
* vector, and stores it in the backend database. Amazon Rekognition uses feature
* vectors when it performs face match and search operations using the
* <a>SearchFaces</a> and <a>SearchFacesByImage</a> operations.</p> <p>For more
* information, see Adding Faces to a Collection in the Amazon Rekognition
* Developer Guide.</p> <p>To get the number of faces in a collection, call
* <a>DescribeCollection</a>. </p> <p>If you're using version 1.0 of the face
* detection model, <code>IndexFaces</code> indexes the 15 largest faces in the
* input image. Later versions of the face detection model index the 100 largest
* faces in the input image. </p> <p>If you're using version 4 or later of the face
* model, image orientation information is not returned in the
* <code>OrientationCorrection</code> field. </p> <p>To determine which version of
* the model you're using, call <a>DescribeCollection</a> and supply the collection
* ID. You can also get the model version from the value of
* <code>FaceModelVersion</code> in the response from <code>IndexFaces</code> </p>
* <p>For more information, see Model Versioning in the Amazon Rekognition
* Developer Guide.</p> <p>If you provide the optional <code>ExternalImageId</code>
* for the input image you provided, Amazon Rekognition associates this ID with all
* faces that it detects. When you call the <a>ListFaces</a> operation, the
* response returns the external ID. You can use this external image ID to create a
* client-side index to associate the faces with each image. You can then use the
* index to find all faces in an image.</p> <p>You can specify the maximum number
* of faces to index with the <code>MaxFaces</code> input parameter. This is useful
* when you want to index the largest faces in an image and don't want to index
* smaller faces, such as those belonging to people standing in the background.</p>
* <p>The <code>QualityFilter</code> input parameter allows you to filter out
* detected faces that dont meet a required quality bar. The quality bar is based
* on a variety of common use cases. By default, <code>IndexFaces</code> chooses
* the quality bar that's used to filter faces. You can also explicitly choose the
* quality bar. Use <code>QualityFilter</code>, to set the quality bar by
* specifying <code>LOW</code>, <code>MEDIUM</code>, or <code>HIGH</code>. If you
* do not want to filter detected faces, specify <code>NONE</code>. </p>
* <p>To use quality filtering, you need a collection associated with version 3 of
* the face model or higher. To get the version of the face model associated with a
* collection, call <a>DescribeCollection</a>. </p> <p>Information about
* faces detected in an image, but not indexed, is returned in an array of
* <a>UnindexedFace</a> objects, <code>UnindexedFaces</code>. Faces aren't indexed
* for reasons such as:</p> <ul> <li> <p>The number of faces detected exceeds the
* value of the <code>MaxFaces</code> request parameter.</p> </li> <li> <p>The face
* is too small compared to the image dimensions.</p> </li> <li> <p>The face is too
* blurry.</p> </li> <li> <p>The image is too dark.</p> </li> <li> <p>The face has
* an extreme pose.</p> </li> <li> <p>The face doesnt have enough detail to be
* suitable for face search.</p> </li> </ul> <p>In response, the
* <code>IndexFaces</code> operation returns an array of metadata for all detected
* faces, <code>FaceRecords</code>. This includes: </p> <ul> <li> <p>The bounding
* box, <code>BoundingBox</code>, of the detected face. </p> </li> <li> <p>A
* confidence value, <code>Confidence</code>, which indicates the confidence that
* the bounding box contains a face.</p> </li> <li> <p>A face ID,
* <code>FaceId</code>, assigned by the service for each face that's detected and
* stored.</p> </li> <li> <p>An image ID, <code>ImageId</code>, assigned by the
* service for the input image.</p> </li> </ul> <p>If you request all facial
* attributes (by using the <code>detectionAttributes</code> parameter), Amazon
* Rekognition returns detailed facial attributes, such as facial landmarks (for
* example, location of eye and mouth) and other facial attributes. If you provide
* the same image, specify the same collection, and use the same external ID in the
* <code>IndexFaces</code> operation, Amazon Rekognition doesn't save duplicate
* face metadata.</p> <p/> <p>The input image is passed either as base64-encoded
* image bytes, or as a reference to an image in an Amazon S3 bucket. If you use
* the AWS CLI to call Amazon Rekognition operations, passing image bytes isn't
* supported. The image must be formatted as a PNG or JPEG file. </p> <p>This
* operation requires permissions to perform the
* <code>rekognition:IndexFaces</code> action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/IndexFaces">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void IndexFacesAsync(const Model::IndexFacesRequest& request, const IndexFacesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Returns list of collection IDs in your account. If the result is truncated,
* the response also provides a <code>NextToken</code> that you can use in the
* subsequent request to fetch the next set of collection IDs.</p> <p>For an
* example, see Listing Collections in the Amazon Rekognition Developer Guide.</p>
* <p>This operation requires permissions to perform the
* <code>rekognition:ListCollections</code> action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/ListCollections">AWS
* API Reference</a></p>
*/
virtual Model::ListCollectionsOutcome ListCollections(const Model::ListCollectionsRequest& request) const;
/**
* <p>Returns list of collection IDs in your account. If the result is truncated,
* the response also provides a <code>NextToken</code> that you can use in the
* subsequent request to fetch the next set of collection IDs.</p> <p>For an
* example, see Listing Collections in the Amazon Rekognition Developer Guide.</p>
* <p>This operation requires permissions to perform the
* <code>rekognition:ListCollections</code> action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/ListCollections">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::ListCollectionsOutcomeCallable ListCollectionsCallable(const Model::ListCollectionsRequest& request) const;
/**
* <p>Returns list of collection IDs in your account. If the result is truncated,
* the response also provides a <code>NextToken</code> that you can use in the
* subsequent request to fetch the next set of collection IDs.</p> <p>For an
* example, see Listing Collections in the Amazon Rekognition Developer Guide.</p>
* <p>This operation requires permissions to perform the
* <code>rekognition:ListCollections</code> action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/ListCollections">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void ListCollectionsAsync(const Model::ListCollectionsRequest& request, const ListCollectionsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Returns metadata for faces in the specified collection. This metadata
* includes information such as the bounding box coordinates, the confidence (that
* the bounding box contains a face), and face ID. For an example, see Listing
* Faces in a Collection in the Amazon Rekognition Developer Guide.</p> <p>This
* operation requires permissions to perform the <code>rekognition:ListFaces</code>
* action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/ListFaces">AWS
* API Reference</a></p>
*/
virtual Model::ListFacesOutcome ListFaces(const Model::ListFacesRequest& request) const;
/**
* <p>Returns metadata for faces in the specified collection. This metadata
* includes information such as the bounding box coordinates, the confidence (that
* the bounding box contains a face), and face ID. For an example, see Listing
* Faces in a Collection in the Amazon Rekognition Developer Guide.</p> <p>This
* operation requires permissions to perform the <code>rekognition:ListFaces</code>
* action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/ListFaces">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::ListFacesOutcomeCallable ListFacesCallable(const Model::ListFacesRequest& request) const;
/**
* <p>Returns metadata for faces in the specified collection. This metadata
* includes information such as the bounding box coordinates, the confidence (that
* the bounding box contains a face), and face ID. For an example, see Listing
* Faces in a Collection in the Amazon Rekognition Developer Guide.</p> <p>This
* operation requires permissions to perform the <code>rekognition:ListFaces</code>
* action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/ListFaces">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void ListFacesAsync(const Model::ListFacesRequest& request, const ListFacesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Gets a list of stream processors that you have created with
* <a>CreateStreamProcessor</a>. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/ListStreamProcessors">AWS
* API Reference</a></p>
*/
virtual Model::ListStreamProcessorsOutcome ListStreamProcessors(const Model::ListStreamProcessorsRequest& request) const;
/**
* <p>Gets a list of stream processors that you have created with
* <a>CreateStreamProcessor</a>. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/ListStreamProcessors">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::ListStreamProcessorsOutcomeCallable ListStreamProcessorsCallable(const Model::ListStreamProcessorsRequest& request) const;
/**
* <p>Gets a list of stream processors that you have created with
* <a>CreateStreamProcessor</a>. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/ListStreamProcessors">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void ListStreamProcessorsAsync(const Model::ListStreamProcessorsRequest& request, const ListStreamProcessorsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Returns an array of celebrities recognized in the input image. For more
* information, see Recognizing Celebrities in the Amazon Rekognition Developer
* Guide. </p> <p> <code>RecognizeCelebrities</code> returns the 100 largest faces
* in the image. It lists recognized celebrities in the <code>CelebrityFaces</code>
* array and unrecognized faces in the <code>UnrecognizedFaces</code> array.
* <code>RecognizeCelebrities</code> doesn't return celebrities whose faces aren't
* among the largest 100 faces in the image.</p> <p>For each celebrity recognized,
* <code>RecognizeCelebrities</code> returns a <code>Celebrity</code> object. The
* <code>Celebrity</code> object contains the celebrity name, ID, URL links to
* additional information, match confidence, and a <code>ComparedFace</code> object
* that you can use to locate the celebrity's face on the image.</p> <p>Amazon
* Rekognition doesn't retain information about which images a celebrity has been
* recognized in. Your application must store this information and use the
* <code>Celebrity</code> ID property as a unique identifier for the celebrity. If
* you don't store the celebrity name or additional information URLs returned by
* <code>RecognizeCelebrities</code>, you will need the ID to identify the
* celebrity in a call to the <a>GetCelebrityInfo</a> operation.</p> <p>You pass
* the input image either as base64-encoded image bytes or as a reference to an
* image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition
* operations, passing image bytes is not supported. The image must be either a PNG
* or JPEG formatted file. </p> <p>For an example, see Recognizing Celebrities in
* an Image in the Amazon Rekognition Developer Guide.</p> <p>This operation
* requires permissions to perform the
* <code>rekognition:RecognizeCelebrities</code> operation.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/RecognizeCelebrities">AWS
* API Reference</a></p>
*/
virtual Model::RecognizeCelebritiesOutcome RecognizeCelebrities(const Model::RecognizeCelebritiesRequest& request) const;
/**
* <p>Returns an array of celebrities recognized in the input image. For more
* information, see Recognizing Celebrities in the Amazon Rekognition Developer
* Guide. </p> <p> <code>RecognizeCelebrities</code> returns the 100 largest faces
* in the image. It lists recognized celebrities in the <code>CelebrityFaces</code>
* array and unrecognized faces in the <code>UnrecognizedFaces</code> array.
* <code>RecognizeCelebrities</code> doesn't return celebrities whose faces aren't
* among the largest 100 faces in the image.</p> <p>For each celebrity recognized,
* <code>RecognizeCelebrities</code> returns a <code>Celebrity</code> object. The
* <code>Celebrity</code> object contains the celebrity name, ID, URL links to
* additional information, match confidence, and a <code>ComparedFace</code> object
* that you can use to locate the celebrity's face on the image.</p> <p>Amazon
* Rekognition doesn't retain information about which images a celebrity has been
* recognized in. Your application must store this information and use the
* <code>Celebrity</code> ID property as a unique identifier for the celebrity. If
* you don't store the celebrity name or additional information URLs returned by
* <code>RecognizeCelebrities</code>, you will need the ID to identify the
* celebrity in a call to the <a>GetCelebrityInfo</a> operation.</p> <p>You pass
* the input image either as base64-encoded image bytes or as a reference to an
* image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition
* operations, passing image bytes is not supported. The image must be either a PNG
* or JPEG formatted file. </p> <p>For an example, see Recognizing Celebrities in
* an Image in the Amazon Rekognition Developer Guide.</p> <p>This operation
* requires permissions to perform the
* <code>rekognition:RecognizeCelebrities</code> operation.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/RecognizeCelebrities">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::RecognizeCelebritiesOutcomeCallable RecognizeCelebritiesCallable(const Model::RecognizeCelebritiesRequest& request) const;
/**
* <p>Returns an array of celebrities recognized in the input image. For more
* information, see Recognizing Celebrities in the Amazon Rekognition Developer
* Guide. </p> <p> <code>RecognizeCelebrities</code> returns the 100 largest faces
* in the image. It lists recognized celebrities in the <code>CelebrityFaces</code>
* array and unrecognized faces in the <code>UnrecognizedFaces</code> array.
* <code>RecognizeCelebrities</code> doesn't return celebrities whose faces aren't
* among the largest 100 faces in the image.</p> <p>For each celebrity recognized,
* <code>RecognizeCelebrities</code> returns a <code>Celebrity</code> object. The
* <code>Celebrity</code> object contains the celebrity name, ID, URL links to
* additional information, match confidence, and a <code>ComparedFace</code> object
* that you can use to locate the celebrity's face on the image.</p> <p>Amazon
* Rekognition doesn't retain information about which images a celebrity has been
* recognized in. Your application must store this information and use the
* <code>Celebrity</code> ID property as a unique identifier for the celebrity. If
* you don't store the celebrity name or additional information URLs returned by
* <code>RecognizeCelebrities</code>, you will need the ID to identify the
* celebrity in a call to the <a>GetCelebrityInfo</a> operation.</p> <p>You pass
* the input image either as base64-encoded image bytes or as a reference to an
* image in an Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition
* operations, passing image bytes is not supported. The image must be either a PNG
* or JPEG formatted file. </p> <p>For an example, see Recognizing Celebrities in
* an Image in the Amazon Rekognition Developer Guide.</p> <p>This operation
* requires permissions to perform the
* <code>rekognition:RecognizeCelebrities</code> operation.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/RecognizeCelebrities">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void RecognizeCelebritiesAsync(const Model::RecognizeCelebritiesRequest& request, const RecognizeCelebritiesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>For a given input face ID, searches for matching faces in the collection the
* face belongs to. You get a face ID when you add a face to the collection using
* the <a>IndexFaces</a> operation. The operation compares the features of the
* input face with faces in the specified collection. </p> <p>You can also
* search faces without indexing faces by using the <code>SearchFacesByImage</code>
* operation.</p> <p> The operation response returns an array of faces that
* match, ordered by similarity score with the highest similarity first. More
* specifically, it is an array of metadata for each face match that is found.
* Along with the metadata, the response also includes a <code>confidence</code>
* value for each face match, indicating the confidence that the specific face
* matches the input face. </p> <p>For an example, see Searching for a Face Using
* Its Face ID in the Amazon Rekognition Developer Guide.</p> <p>This operation
* requires permissions to perform the <code>rekognition:SearchFaces</code>
* action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/SearchFaces">AWS
* API Reference</a></p>
*/
virtual Model::SearchFacesOutcome SearchFaces(const Model::SearchFacesRequest& request) const;
/**
* <p>For a given input face ID, searches for matching faces in the collection the
* face belongs to. You get a face ID when you add a face to the collection using
* the <a>IndexFaces</a> operation. The operation compares the features of the
* input face with faces in the specified collection. </p> <p>You can also
* search faces without indexing faces by using the <code>SearchFacesByImage</code>
* operation.</p> <p> The operation response returns an array of faces that
* match, ordered by similarity score with the highest similarity first. More
* specifically, it is an array of metadata for each face match that is found.
* Along with the metadata, the response also includes a <code>confidence</code>
* value for each face match, indicating the confidence that the specific face
* matches the input face. </p> <p>For an example, see Searching for a Face Using
* Its Face ID in the Amazon Rekognition Developer Guide.</p> <p>This operation
* requires permissions to perform the <code>rekognition:SearchFaces</code>
* action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/SearchFaces">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::SearchFacesOutcomeCallable SearchFacesCallable(const Model::SearchFacesRequest& request) const;
/**
* <p>For a given input face ID, searches for matching faces in the collection the
* face belongs to. You get a face ID when you add a face to the collection using
* the <a>IndexFaces</a> operation. The operation compares the features of the
* input face with faces in the specified collection. </p> <p>You can also
* search faces without indexing faces by using the <code>SearchFacesByImage</code>
* operation.</p> <p> The operation response returns an array of faces that
* match, ordered by similarity score with the highest similarity first. More
* specifically, it is an array of metadata for each face match that is found.
* Along with the metadata, the response also includes a <code>confidence</code>
* value for each face match, indicating the confidence that the specific face
* matches the input face. </p> <p>For an example, see Searching for a Face Using
* Its Face ID in the Amazon Rekognition Developer Guide.</p> <p>This operation
* requires permissions to perform the <code>rekognition:SearchFaces</code>
* action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/SearchFaces">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void SearchFacesAsync(const Model::SearchFacesRequest& request, const SearchFacesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>For a given input image, first detects the largest face in the image, and
* then searches the specified collection for matching faces. The operation
* compares the features of the input face with faces in the specified collection.
* </p> <p>To search for all faces in an input image, you might first call
* the <a>IndexFaces</a> operation, and then use the face IDs returned in
* subsequent calls to the <a>SearchFaces</a> operation. </p> <p> You can also call
* the <code>DetectFaces</code> operation and use the bounding boxes in the
* response to make face crops, which then you can pass in to the
* <code>SearchFacesByImage</code> operation. </p> <p>You pass the input
* image either as base64-encoded image bytes or as a reference to an image in an
* Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations,
* passing image bytes is not supported. The image must be either a PNG or JPEG
* formatted file. </p> <p> The response returns an array of faces that match,
* ordered by similarity score with the highest similarity first. More
* specifically, it is an array of metadata for each face match found. Along with
* the metadata, the response also includes a <code>similarity</code> indicating
* how similar the face is to the input face. In the response, the operation also
* returns the bounding box (and a confidence level that the bounding box contains
* a face) of the face that Amazon Rekognition used for the input image. </p>
* <p>For an example, Searching for a Face Using an Image in the Amazon Rekognition
* Developer Guide.</p> <p>The <code>QualityFilter</code> input parameter allows
* you to filter out detected faces that dont meet a required quality bar. The
* quality bar is based on a variety of common use cases. Use
* <code>QualityFilter</code> to set the quality bar for filtering by specifying
* <code>LOW</code>, <code>MEDIUM</code>, or <code>HIGH</code>. If you do not want
* to filter detected faces, specify <code>NONE</code>. The default value is
* <code>NONE</code>.</p> <p>To use quality filtering, you need a collection
* associated with version 3 of the face model or higher. To get the version of the
* face model associated with a collection, call <a>DescribeCollection</a>. </p>
* <p>This operation requires permissions to perform the
* <code>rekognition:SearchFacesByImage</code> action.</p><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/SearchFacesByImage">AWS
* API Reference</a></p>
*/
virtual Model::SearchFacesByImageOutcome SearchFacesByImage(const Model::SearchFacesByImageRequest& request) const;
/**
* <p>For a given input image, first detects the largest face in the image, and
* then searches the specified collection for matching faces. The operation
* compares the features of the input face with faces in the specified collection.
* </p> <p>To search for all faces in an input image, you might first call
* the <a>IndexFaces</a> operation, and then use the face IDs returned in
* subsequent calls to the <a>SearchFaces</a> operation. </p> <p> You can also call
* the <code>DetectFaces</code> operation and use the bounding boxes in the
* response to make face crops, which then you can pass in to the
* <code>SearchFacesByImage</code> operation. </p> <p>You pass the input
* image either as base64-encoded image bytes or as a reference to an image in an
* Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations,
* passing image bytes is not supported. The image must be either a PNG or JPEG
* formatted file. </p> <p> The response returns an array of faces that match,
* ordered by similarity score with the highest similarity first. More
* specifically, it is an array of metadata for each face match found. Along with
* the metadata, the response also includes a <code>similarity</code> indicating
* how similar the face is to the input face. In the response, the operation also
* returns the bounding box (and a confidence level that the bounding box contains
* a face) of the face that Amazon Rekognition used for the input image. </p>
* <p>For an example, Searching for a Face Using an Image in the Amazon Rekognition
* Developer Guide.</p> <p>The <code>QualityFilter</code> input parameter allows
* you to filter out detected faces that dont meet a required quality bar. The
* quality bar is based on a variety of common use cases. Use
* <code>QualityFilter</code> to set the quality bar for filtering by specifying
* <code>LOW</code>, <code>MEDIUM</code>, or <code>HIGH</code>. If you do not want
* to filter detected faces, specify <code>NONE</code>. The default value is
* <code>NONE</code>.</p> <p>To use quality filtering, you need a collection
* associated with version 3 of the face model or higher. To get the version of the
* face model associated with a collection, call <a>DescribeCollection</a>. </p>
* <p>This operation requires permissions to perform the
* <code>rekognition:SearchFacesByImage</code> action.</p><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/SearchFacesByImage">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::SearchFacesByImageOutcomeCallable SearchFacesByImageCallable(const Model::SearchFacesByImageRequest& request) const;
/**
* <p>For a given input image, first detects the largest face in the image, and
* then searches the specified collection for matching faces. The operation
* compares the features of the input face with faces in the specified collection.
* </p> <p>To search for all faces in an input image, you might first call
* the <a>IndexFaces</a> operation, and then use the face IDs returned in
* subsequent calls to the <a>SearchFaces</a> operation. </p> <p> You can also call
* the <code>DetectFaces</code> operation and use the bounding boxes in the
* response to make face crops, which then you can pass in to the
* <code>SearchFacesByImage</code> operation. </p> <p>You pass the input
* image either as base64-encoded image bytes or as a reference to an image in an
* Amazon S3 bucket. If you use the AWS CLI to call Amazon Rekognition operations,
* passing image bytes is not supported. The image must be either a PNG or JPEG
* formatted file. </p> <p> The response returns an array of faces that match,
* ordered by similarity score with the highest similarity first. More
* specifically, it is an array of metadata for each face match found. Along with
* the metadata, the response also includes a <code>similarity</code> indicating
* how similar the face is to the input face. In the response, the operation also
* returns the bounding box (and a confidence level that the bounding box contains
* a face) of the face that Amazon Rekognition used for the input image. </p>
* <p>For an example, Searching for a Face Using an Image in the Amazon Rekognition
* Developer Guide.</p> <p>The <code>QualityFilter</code> input parameter allows
* you to filter out detected faces that dont meet a required quality bar. The
* quality bar is based on a variety of common use cases. Use
* <code>QualityFilter</code> to set the quality bar for filtering by specifying
* <code>LOW</code>, <code>MEDIUM</code>, or <code>HIGH</code>. If you do not want
* to filter detected faces, specify <code>NONE</code>. The default value is
* <code>NONE</code>.</p> <p>To use quality filtering, you need a collection
* associated with version 3 of the face model or higher. To get the version of the
* face model associated with a collection, call <a>DescribeCollection</a>. </p>
* <p>This operation requires permissions to perform the
* <code>rekognition:SearchFacesByImage</code> action.</p><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/SearchFacesByImage">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void SearchFacesByImageAsync(const Model::SearchFacesByImageRequest& request, const SearchFacesByImageResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Starts asynchronous recognition of celebrities in a stored video.</p>
* <p>Amazon Rekognition Video can detect celebrities in a video must be stored in
* an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the
* filename of the video. <code>StartCelebrityRecognition</code> returns a job
* identifier (<code>JobId</code>) which you use to get the results of the
* analysis. When celebrity recognition analysis is finished, Amazon Rekognition
* Video publishes a completion status to the Amazon Simple Notification Service
* topic that you specify in <code>NotificationChannel</code>. To get the results
* of the celebrity recognition analysis, first check that the status value
* published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call
* <a>GetCelebrityRecognition</a> and pass the job identifier (<code>JobId</code>)
* from the initial call to <code>StartCelebrityRecognition</code>. </p> <p>For
* more information, see Recognizing Celebrities in the Amazon Rekognition
* Developer Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartCelebrityRecognition">AWS
* API Reference</a></p>
*/
virtual Model::StartCelebrityRecognitionOutcome StartCelebrityRecognition(const Model::StartCelebrityRecognitionRequest& request) const;
/**
* <p>Starts asynchronous recognition of celebrities in a stored video.</p>
* <p>Amazon Rekognition Video can detect celebrities in a video must be stored in
* an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the
* filename of the video. <code>StartCelebrityRecognition</code> returns a job
* identifier (<code>JobId</code>) which you use to get the results of the
* analysis. When celebrity recognition analysis is finished, Amazon Rekognition
* Video publishes a completion status to the Amazon Simple Notification Service
* topic that you specify in <code>NotificationChannel</code>. To get the results
* of the celebrity recognition analysis, first check that the status value
* published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call
* <a>GetCelebrityRecognition</a> and pass the job identifier (<code>JobId</code>)
* from the initial call to <code>StartCelebrityRecognition</code>. </p> <p>For
* more information, see Recognizing Celebrities in the Amazon Rekognition
* Developer Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartCelebrityRecognition">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::StartCelebrityRecognitionOutcomeCallable StartCelebrityRecognitionCallable(const Model::StartCelebrityRecognitionRequest& request) const;
/**
* <p>Starts asynchronous recognition of celebrities in a stored video.</p>
* <p>Amazon Rekognition Video can detect celebrities in a video must be stored in
* an Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the
* filename of the video. <code>StartCelebrityRecognition</code> returns a job
* identifier (<code>JobId</code>) which you use to get the results of the
* analysis. When celebrity recognition analysis is finished, Amazon Rekognition
* Video publishes a completion status to the Amazon Simple Notification Service
* topic that you specify in <code>NotificationChannel</code>. To get the results
* of the celebrity recognition analysis, first check that the status value
* published to the Amazon SNS topic is <code>SUCCEEDED</code>. If so, call
* <a>GetCelebrityRecognition</a> and pass the job identifier (<code>JobId</code>)
* from the initial call to <code>StartCelebrityRecognition</code>. </p> <p>For
* more information, see Recognizing Celebrities in the Amazon Rekognition
* Developer Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartCelebrityRecognition">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void StartCelebrityRecognitionAsync(const Model::StartCelebrityRecognitionRequest& request, const StartCelebrityRecognitionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p> Starts asynchronous detection of unsafe content in a stored video.</p>
* <p>Amazon Rekognition Video can moderate content in a video stored in an Amazon
* S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the
* video. <code>StartContentModeration</code> returns a job identifier
* (<code>JobId</code>) which you use to get the results of the analysis. When
* unsafe content analysis is finished, Amazon Rekognition Video publishes a
* completion status to the Amazon Simple Notification Service topic that you
* specify in <code>NotificationChannel</code>.</p> <p>To get the results of the
* unsafe content analysis, first check that the status value published to the
* Amazon SNS topic is <code>SUCCEEDED</code>. If so, call
* <a>GetContentModeration</a> and pass the job identifier (<code>JobId</code>)
* from the initial call to <code>StartContentModeration</code>. </p> <p>For more
* information, see Detecting Unsafe Content in the Amazon Rekognition Developer
* Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartContentModeration">AWS
* API Reference</a></p>
*/
virtual Model::StartContentModerationOutcome StartContentModeration(const Model::StartContentModerationRequest& request) const;
/**
* <p> Starts asynchronous detection of unsafe content in a stored video.</p>
* <p>Amazon Rekognition Video can moderate content in a video stored in an Amazon
* S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the
* video. <code>StartContentModeration</code> returns a job identifier
* (<code>JobId</code>) which you use to get the results of the analysis. When
* unsafe content analysis is finished, Amazon Rekognition Video publishes a
* completion status to the Amazon Simple Notification Service topic that you
* specify in <code>NotificationChannel</code>.</p> <p>To get the results of the
* unsafe content analysis, first check that the status value published to the
* Amazon SNS topic is <code>SUCCEEDED</code>. If so, call
* <a>GetContentModeration</a> and pass the job identifier (<code>JobId</code>)
* from the initial call to <code>StartContentModeration</code>. </p> <p>For more
* information, see Detecting Unsafe Content in the Amazon Rekognition Developer
* Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartContentModeration">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::StartContentModerationOutcomeCallable StartContentModerationCallable(const Model::StartContentModerationRequest& request) const;
/**
* <p> Starts asynchronous detection of unsafe content in a stored video.</p>
* <p>Amazon Rekognition Video can moderate content in a video stored in an Amazon
* S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the
* video. <code>StartContentModeration</code> returns a job identifier
* (<code>JobId</code>) which you use to get the results of the analysis. When
* unsafe content analysis is finished, Amazon Rekognition Video publishes a
* completion status to the Amazon Simple Notification Service topic that you
* specify in <code>NotificationChannel</code>.</p> <p>To get the results of the
* unsafe content analysis, first check that the status value published to the
* Amazon SNS topic is <code>SUCCEEDED</code>. If so, call
* <a>GetContentModeration</a> and pass the job identifier (<code>JobId</code>)
* from the initial call to <code>StartContentModeration</code>. </p> <p>For more
* information, see Detecting Unsafe Content in the Amazon Rekognition Developer
* Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartContentModeration">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void StartContentModerationAsync(const Model::StartContentModerationRequest& request, const StartContentModerationResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Starts asynchronous detection of faces in a stored video.</p> <p>Amazon
* Rekognition Video can detect faces in a video stored in an Amazon S3 bucket. Use
* <a>Video</a> to specify the bucket name and the filename of the video.
* <code>StartFaceDetection</code> returns a job identifier (<code>JobId</code>)
* that you use to get the results of the operation. When face detection is
* finished, Amazon Rekognition Video publishes a completion status to the Amazon
* Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>. To get the results of the face detection
* operation, first check that the status value published to the Amazon SNS topic
* is <code>SUCCEEDED</code>. If so, call <a>GetFaceDetection</a> and pass the job
* identifier (<code>JobId</code>) from the initial call to
* <code>StartFaceDetection</code>.</p> <p>For more information, see Detecting
* Faces in a Stored Video in the Amazon Rekognition Developer Guide.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartFaceDetection">AWS
* API Reference</a></p>
*/
virtual Model::StartFaceDetectionOutcome StartFaceDetection(const Model::StartFaceDetectionRequest& request) const;
/**
* <p>Starts asynchronous detection of faces in a stored video.</p> <p>Amazon
* Rekognition Video can detect faces in a video stored in an Amazon S3 bucket. Use
* <a>Video</a> to specify the bucket name and the filename of the video.
* <code>StartFaceDetection</code> returns a job identifier (<code>JobId</code>)
* that you use to get the results of the operation. When face detection is
* finished, Amazon Rekognition Video publishes a completion status to the Amazon
* Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>. To get the results of the face detection
* operation, first check that the status value published to the Amazon SNS topic
* is <code>SUCCEEDED</code>. If so, call <a>GetFaceDetection</a> and pass the job
* identifier (<code>JobId</code>) from the initial call to
* <code>StartFaceDetection</code>.</p> <p>For more information, see Detecting
* Faces in a Stored Video in the Amazon Rekognition Developer Guide.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartFaceDetection">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::StartFaceDetectionOutcomeCallable StartFaceDetectionCallable(const Model::StartFaceDetectionRequest& request) const;
/**
* <p>Starts asynchronous detection of faces in a stored video.</p> <p>Amazon
* Rekognition Video can detect faces in a video stored in an Amazon S3 bucket. Use
* <a>Video</a> to specify the bucket name and the filename of the video.
* <code>StartFaceDetection</code> returns a job identifier (<code>JobId</code>)
* that you use to get the results of the operation. When face detection is
* finished, Amazon Rekognition Video publishes a completion status to the Amazon
* Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>. To get the results of the face detection
* operation, first check that the status value published to the Amazon SNS topic
* is <code>SUCCEEDED</code>. If so, call <a>GetFaceDetection</a> and pass the job
* identifier (<code>JobId</code>) from the initial call to
* <code>StartFaceDetection</code>.</p> <p>For more information, see Detecting
* Faces in a Stored Video in the Amazon Rekognition Developer Guide.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartFaceDetection">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void StartFaceDetectionAsync(const Model::StartFaceDetectionRequest& request, const StartFaceDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Starts the asynchronous search for faces in a collection that match the faces
* of persons detected in a stored video.</p> <p>The video must be stored in an
* Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename
* of the video. <code>StartFaceSearch</code> returns a job identifier
* (<code>JobId</code>) which you use to get the search results once the search has
* completed. When searching is finished, Amazon Rekognition Video publishes a
* completion status to the Amazon Simple Notification Service topic that you
* specify in <code>NotificationChannel</code>. To get the search results, first
* check that the status value published to the Amazon SNS topic is
* <code>SUCCEEDED</code>. If so, call <a>GetFaceSearch</a> and pass the job
* identifier (<code>JobId</code>) from the initial call to
* <code>StartFaceSearch</code>. For more information, see
* <a>procedure-person-search-videos</a>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartFaceSearch">AWS
* API Reference</a></p>
*/
virtual Model::StartFaceSearchOutcome StartFaceSearch(const Model::StartFaceSearchRequest& request) const;
/**
* <p>Starts the asynchronous search for faces in a collection that match the faces
* of persons detected in a stored video.</p> <p>The video must be stored in an
* Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename
* of the video. <code>StartFaceSearch</code> returns a job identifier
* (<code>JobId</code>) which you use to get the search results once the search has
* completed. When searching is finished, Amazon Rekognition Video publishes a
* completion status to the Amazon Simple Notification Service topic that you
* specify in <code>NotificationChannel</code>. To get the search results, first
* check that the status value published to the Amazon SNS topic is
* <code>SUCCEEDED</code>. If so, call <a>GetFaceSearch</a> and pass the job
* identifier (<code>JobId</code>) from the initial call to
* <code>StartFaceSearch</code>. For more information, see
* <a>procedure-person-search-videos</a>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartFaceSearch">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::StartFaceSearchOutcomeCallable StartFaceSearchCallable(const Model::StartFaceSearchRequest& request) const;
/**
* <p>Starts the asynchronous search for faces in a collection that match the faces
* of persons detected in a stored video.</p> <p>The video must be stored in an
* Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename
* of the video. <code>StartFaceSearch</code> returns a job identifier
* (<code>JobId</code>) which you use to get the search results once the search has
* completed. When searching is finished, Amazon Rekognition Video publishes a
* completion status to the Amazon Simple Notification Service topic that you
* specify in <code>NotificationChannel</code>. To get the search results, first
* check that the status value published to the Amazon SNS topic is
* <code>SUCCEEDED</code>. If so, call <a>GetFaceSearch</a> and pass the job
* identifier (<code>JobId</code>) from the initial call to
* <code>StartFaceSearch</code>. For more information, see
* <a>procedure-person-search-videos</a>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartFaceSearch">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void StartFaceSearchAsync(const Model::StartFaceSearchRequest& request, const StartFaceSearchResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Starts asynchronous detection of labels in a stored video.</p> <p>Amazon
* Rekognition Video can detect labels in a video. Labels are instances of
* real-world entities. This includes objects like flower, tree, and table; events
* like wedding, graduation, and birthday party; concepts like landscape, evening,
* and nature; and activities like a person getting out of a car or a person
* skiing.</p> <p>The video must be stored in an Amazon S3 bucket. Use <a>Video</a>
* to specify the bucket name and the filename of the video.
* <code>StartLabelDetection</code> returns a job identifier (<code>JobId</code>)
* which you use to get the results of the operation. When label detection is
* finished, Amazon Rekognition Video publishes a completion status to the Amazon
* Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>.</p> <p>To get the results of the label
* detection operation, first check that the status value published to the Amazon
* SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetLabelDetection</a> and
* pass the job identifier (<code>JobId</code>) from the initial call to
* <code>StartLabelDetection</code>.</p> <p/><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartLabelDetection">AWS
* API Reference</a></p>
*/
virtual Model::StartLabelDetectionOutcome StartLabelDetection(const Model::StartLabelDetectionRequest& request) const;
/**
* <p>Starts asynchronous detection of labels in a stored video.</p> <p>Amazon
* Rekognition Video can detect labels in a video. Labels are instances of
* real-world entities. This includes objects like flower, tree, and table; events
* like wedding, graduation, and birthday party; concepts like landscape, evening,
* and nature; and activities like a person getting out of a car or a person
* skiing.</p> <p>The video must be stored in an Amazon S3 bucket. Use <a>Video</a>
* to specify the bucket name and the filename of the video.
* <code>StartLabelDetection</code> returns a job identifier (<code>JobId</code>)
* which you use to get the results of the operation. When label detection is
* finished, Amazon Rekognition Video publishes a completion status to the Amazon
* Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>.</p> <p>To get the results of the label
* detection operation, first check that the status value published to the Amazon
* SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetLabelDetection</a> and
* pass the job identifier (<code>JobId</code>) from the initial call to
* <code>StartLabelDetection</code>.</p> <p/><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartLabelDetection">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::StartLabelDetectionOutcomeCallable StartLabelDetectionCallable(const Model::StartLabelDetectionRequest& request) const;
/**
* <p>Starts asynchronous detection of labels in a stored video.</p> <p>Amazon
* Rekognition Video can detect labels in a video. Labels are instances of
* real-world entities. This includes objects like flower, tree, and table; events
* like wedding, graduation, and birthday party; concepts like landscape, evening,
* and nature; and activities like a person getting out of a car or a person
* skiing.</p> <p>The video must be stored in an Amazon S3 bucket. Use <a>Video</a>
* to specify the bucket name and the filename of the video.
* <code>StartLabelDetection</code> returns a job identifier (<code>JobId</code>)
* which you use to get the results of the operation. When label detection is
* finished, Amazon Rekognition Video publishes a completion status to the Amazon
* Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>.</p> <p>To get the results of the label
* detection operation, first check that the status value published to the Amazon
* SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetLabelDetection</a> and
* pass the job identifier (<code>JobId</code>) from the initial call to
* <code>StartLabelDetection</code>.</p> <p/><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartLabelDetection">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void StartLabelDetectionAsync(const Model::StartLabelDetectionRequest& request, const StartLabelDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Starts the asynchronous tracking of a person's path in a stored video.</p>
* <p>Amazon Rekognition Video can track the path of people in a video stored in an
* Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename
* of the video. <code>StartPersonTracking</code> returns a job identifier
* (<code>JobId</code>) which you use to get the results of the operation. When
* label detection is finished, Amazon Rekognition publishes a completion status to
* the Amazon Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>. </p> <p>To get the results of the person
* detection operation, first check that the status value published to the Amazon
* SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetPersonTracking</a> and
* pass the job identifier (<code>JobId</code>) from the initial call to
* <code>StartPersonTracking</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartPersonTracking">AWS
* API Reference</a></p>
*/
virtual Model::StartPersonTrackingOutcome StartPersonTracking(const Model::StartPersonTrackingRequest& request) const;
/**
* <p>Starts the asynchronous tracking of a person's path in a stored video.</p>
* <p>Amazon Rekognition Video can track the path of people in a video stored in an
* Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename
* of the video. <code>StartPersonTracking</code> returns a job identifier
* (<code>JobId</code>) which you use to get the results of the operation. When
* label detection is finished, Amazon Rekognition publishes a completion status to
* the Amazon Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>. </p> <p>To get the results of the person
* detection operation, first check that the status value published to the Amazon
* SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetPersonTracking</a> and
* pass the job identifier (<code>JobId</code>) from the initial call to
* <code>StartPersonTracking</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartPersonTracking">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::StartPersonTrackingOutcomeCallable StartPersonTrackingCallable(const Model::StartPersonTrackingRequest& request) const;
/**
* <p>Starts the asynchronous tracking of a person's path in a stored video.</p>
* <p>Amazon Rekognition Video can track the path of people in a video stored in an
* Amazon S3 bucket. Use <a>Video</a> to specify the bucket name and the filename
* of the video. <code>StartPersonTracking</code> returns a job identifier
* (<code>JobId</code>) which you use to get the results of the operation. When
* label detection is finished, Amazon Rekognition publishes a completion status to
* the Amazon Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>. </p> <p>To get the results of the person
* detection operation, first check that the status value published to the Amazon
* SNS topic is <code>SUCCEEDED</code>. If so, call <a>GetPersonTracking</a> and
* pass the job identifier (<code>JobId</code>) from the initial call to
* <code>StartPersonTracking</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartPersonTracking">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void StartPersonTrackingAsync(const Model::StartPersonTrackingRequest& request, const StartPersonTrackingResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Starts the running of the version of a model. Starting a model takes a while
* to complete. To check the current state of the model, use
* <a>DescribeProjectVersions</a>.</p> <p>Once the model is running, you can detect
* custom labels in new images by calling <a>DetectCustomLabels</a>.</p>
* <p>You are charged for the amount of time that the model is running. To stop a
* running model, call <a>StopProjectVersion</a>.</p> <p>This operation
* requires permissions to perform the <code>rekognition:StartProjectVersion</code>
* action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartProjectVersion">AWS
* API Reference</a></p>
*/
virtual Model::StartProjectVersionOutcome StartProjectVersion(const Model::StartProjectVersionRequest& request) const;
/**
* <p>Starts the running of the version of a model. Starting a model takes a while
* to complete. To check the current state of the model, use
* <a>DescribeProjectVersions</a>.</p> <p>Once the model is running, you can detect
* custom labels in new images by calling <a>DetectCustomLabels</a>.</p>
* <p>You are charged for the amount of time that the model is running. To stop a
* running model, call <a>StopProjectVersion</a>.</p> <p>This operation
* requires permissions to perform the <code>rekognition:StartProjectVersion</code>
* action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartProjectVersion">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::StartProjectVersionOutcomeCallable StartProjectVersionCallable(const Model::StartProjectVersionRequest& request) const;
/**
* <p>Starts the running of the version of a model. Starting a model takes a while
* to complete. To check the current state of the model, use
* <a>DescribeProjectVersions</a>.</p> <p>Once the model is running, you can detect
* custom labels in new images by calling <a>DetectCustomLabels</a>.</p>
* <p>You are charged for the amount of time that the model is running. To stop a
* running model, call <a>StopProjectVersion</a>.</p> <p>This operation
* requires permissions to perform the <code>rekognition:StartProjectVersion</code>
* action.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartProjectVersion">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void StartProjectVersionAsync(const Model::StartProjectVersionRequest& request, const StartProjectVersionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Starts asynchronous detection of segment detection in a stored video.</p>
* <p>Amazon Rekognition Video can detect segments in a video stored in an Amazon
* S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the
* video. <code>StartSegmentDetection</code> returns a job identifier
* (<code>JobId</code>) which you use to get the results of the operation. When
* segment detection is finished, Amazon Rekognition Video publishes a completion
* status to the Amazon Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>.</p> <p>You can use the <code>Filters</code>
* (<a>StartSegmentDetectionFilters</a>) input parameter to specify the minimum
* detection confidence returned in the response. Within <code>Filters</code>, use
* <code>ShotFilter</code> (<a>StartShotDetectionFilter</a>) to filter detected
* shots. Use <code>TechnicalCueFilter</code>
* (<a>StartTechnicalCueDetectionFilter</a>) to filter technical cues. </p> <p>To
* get the results of the segment detection operation, first check that the status
* value published to the Amazon SNS topic is <code>SUCCEEDED</code>. if so, call
* <a>GetSegmentDetection</a> and pass the job identifier (<code>JobId</code>) from
* the initial call to <code>StartSegmentDetection</code>. </p> <p>For more
* information, see Detecting Video Segments in Stored Video in the Amazon
* Rekognition Developer Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartSegmentDetection">AWS
* API Reference</a></p>
*/
virtual Model::StartSegmentDetectionOutcome StartSegmentDetection(const Model::StartSegmentDetectionRequest& request) const;
/**
* <p>Starts asynchronous detection of segment detection in a stored video.</p>
* <p>Amazon Rekognition Video can detect segments in a video stored in an Amazon
* S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the
* video. <code>StartSegmentDetection</code> returns a job identifier
* (<code>JobId</code>) which you use to get the results of the operation. When
* segment detection is finished, Amazon Rekognition Video publishes a completion
* status to the Amazon Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>.</p> <p>You can use the <code>Filters</code>
* (<a>StartSegmentDetectionFilters</a>) input parameter to specify the minimum
* detection confidence returned in the response. Within <code>Filters</code>, use
* <code>ShotFilter</code> (<a>StartShotDetectionFilter</a>) to filter detected
* shots. Use <code>TechnicalCueFilter</code>
* (<a>StartTechnicalCueDetectionFilter</a>) to filter technical cues. </p> <p>To
* get the results of the segment detection operation, first check that the status
* value published to the Amazon SNS topic is <code>SUCCEEDED</code>. if so, call
* <a>GetSegmentDetection</a> and pass the job identifier (<code>JobId</code>) from
* the initial call to <code>StartSegmentDetection</code>. </p> <p>For more
* information, see Detecting Video Segments in Stored Video in the Amazon
* Rekognition Developer Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartSegmentDetection">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::StartSegmentDetectionOutcomeCallable StartSegmentDetectionCallable(const Model::StartSegmentDetectionRequest& request) const;
/**
* <p>Starts asynchronous detection of segment detection in a stored video.</p>
* <p>Amazon Rekognition Video can detect segments in a video stored in an Amazon
* S3 bucket. Use <a>Video</a> to specify the bucket name and the filename of the
* video. <code>StartSegmentDetection</code> returns a job identifier
* (<code>JobId</code>) which you use to get the results of the operation. When
* segment detection is finished, Amazon Rekognition Video publishes a completion
* status to the Amazon Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>.</p> <p>You can use the <code>Filters</code>
* (<a>StartSegmentDetectionFilters</a>) input parameter to specify the minimum
* detection confidence returned in the response. Within <code>Filters</code>, use
* <code>ShotFilter</code> (<a>StartShotDetectionFilter</a>) to filter detected
* shots. Use <code>TechnicalCueFilter</code>
* (<a>StartTechnicalCueDetectionFilter</a>) to filter technical cues. </p> <p>To
* get the results of the segment detection operation, first check that the status
* value published to the Amazon SNS topic is <code>SUCCEEDED</code>. if so, call
* <a>GetSegmentDetection</a> and pass the job identifier (<code>JobId</code>) from
* the initial call to <code>StartSegmentDetection</code>. </p> <p>For more
* information, see Detecting Video Segments in Stored Video in the Amazon
* Rekognition Developer Guide.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartSegmentDetection">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void StartSegmentDetectionAsync(const Model::StartSegmentDetectionRequest& request, const StartSegmentDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Starts processing a stream processor. You create a stream processor by
* calling <a>CreateStreamProcessor</a>. To tell <code>StartStreamProcessor</code>
* which stream processor to start, use the value of the <code>Name</code> field
* specified in the call to <code>CreateStreamProcessor</code>.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartStreamProcessor">AWS
* API Reference</a></p>
*/
virtual Model::StartStreamProcessorOutcome StartStreamProcessor(const Model::StartStreamProcessorRequest& request) const;
/**
* <p>Starts processing a stream processor. You create a stream processor by
* calling <a>CreateStreamProcessor</a>. To tell <code>StartStreamProcessor</code>
* which stream processor to start, use the value of the <code>Name</code> field
* specified in the call to <code>CreateStreamProcessor</code>.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartStreamProcessor">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::StartStreamProcessorOutcomeCallable StartStreamProcessorCallable(const Model::StartStreamProcessorRequest& request) const;
/**
* <p>Starts processing a stream processor. You create a stream processor by
* calling <a>CreateStreamProcessor</a>. To tell <code>StartStreamProcessor</code>
* which stream processor to start, use the value of the <code>Name</code> field
* specified in the call to <code>CreateStreamProcessor</code>.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartStreamProcessor">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void StartStreamProcessorAsync(const Model::StartStreamProcessorRequest& request, const StartStreamProcessorResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Starts asynchronous detection of text in a stored video.</p> <p>Amazon
* Rekognition Video can detect text in a video stored in an Amazon S3 bucket. Use
* <a>Video</a> to specify the bucket name and the filename of the video.
* <code>StartTextDetection</code> returns a job identifier (<code>JobId</code>)
* which you use to get the results of the operation. When text detection is
* finished, Amazon Rekognition Video publishes a completion status to the Amazon
* Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>.</p> <p>To get the results of the text
* detection operation, first check that the status value published to the Amazon
* SNS topic is <code>SUCCEEDED</code>. if so, call <a>GetTextDetection</a> and
* pass the job identifier (<code>JobId</code>) from the initial call to
* <code>StartTextDetection</code>. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartTextDetection">AWS
* API Reference</a></p>
*/
virtual Model::StartTextDetectionOutcome StartTextDetection(const Model::StartTextDetectionRequest& request) const;
/**
* <p>Starts asynchronous detection of text in a stored video.</p> <p>Amazon
* Rekognition Video can detect text in a video stored in an Amazon S3 bucket. Use
* <a>Video</a> to specify the bucket name and the filename of the video.
* <code>StartTextDetection</code> returns a job identifier (<code>JobId</code>)
* which you use to get the results of the operation. When text detection is
* finished, Amazon Rekognition Video publishes a completion status to the Amazon
* Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>.</p> <p>To get the results of the text
* detection operation, first check that the status value published to the Amazon
* SNS topic is <code>SUCCEEDED</code>. if so, call <a>GetTextDetection</a> and
* pass the job identifier (<code>JobId</code>) from the initial call to
* <code>StartTextDetection</code>. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartTextDetection">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::StartTextDetectionOutcomeCallable StartTextDetectionCallable(const Model::StartTextDetectionRequest& request) const;
/**
* <p>Starts asynchronous detection of text in a stored video.</p> <p>Amazon
* Rekognition Video can detect text in a video stored in an Amazon S3 bucket. Use
* <a>Video</a> to specify the bucket name and the filename of the video.
* <code>StartTextDetection</code> returns a job identifier (<code>JobId</code>)
* which you use to get the results of the operation. When text detection is
* finished, Amazon Rekognition Video publishes a completion status to the Amazon
* Simple Notification Service topic that you specify in
* <code>NotificationChannel</code>.</p> <p>To get the results of the text
* detection operation, first check that the status value published to the Amazon
* SNS topic is <code>SUCCEEDED</code>. if so, call <a>GetTextDetection</a> and
* pass the job identifier (<code>JobId</code>) from the initial call to
* <code>StartTextDetection</code>. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StartTextDetection">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void StartTextDetectionAsync(const Model::StartTextDetectionRequest& request, const StartTextDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Stops a running model. The operation might take a while to complete. To check
* the current status, call <a>DescribeProjectVersions</a>. </p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StopProjectVersion">AWS
* API Reference</a></p>
*/
virtual Model::StopProjectVersionOutcome StopProjectVersion(const Model::StopProjectVersionRequest& request) const;
/**
* <p>Stops a running model. The operation might take a while to complete. To check
* the current status, call <a>DescribeProjectVersions</a>. </p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StopProjectVersion">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::StopProjectVersionOutcomeCallable StopProjectVersionCallable(const Model::StopProjectVersionRequest& request) const;
/**
* <p>Stops a running model. The operation might take a while to complete. To check
* the current status, call <a>DescribeProjectVersions</a>. </p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StopProjectVersion">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void StopProjectVersionAsync(const Model::StopProjectVersionRequest& request, const StopProjectVersionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Stops a running stream processor that was created by
* <a>CreateStreamProcessor</a>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StopStreamProcessor">AWS
* API Reference</a></p>
*/
virtual Model::StopStreamProcessorOutcome StopStreamProcessor(const Model::StopStreamProcessorRequest& request) const;
/**
* <p>Stops a running stream processor that was created by
* <a>CreateStreamProcessor</a>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StopStreamProcessor">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::StopStreamProcessorOutcomeCallable StopStreamProcessorCallable(const Model::StopStreamProcessorRequest& request) const;
/**
* <p>Stops a running stream processor that was created by
* <a>CreateStreamProcessor</a>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/rekognition-2016-06-27/StopStreamProcessor">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void StopStreamProcessorAsync(const Model::StopStreamProcessorRequest& request, const StopStreamProcessorResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
void OverrideEndpoint(const Aws::String& endpoint);
private:
void init(const Aws::Client::ClientConfiguration& clientConfiguration);
void CompareFacesAsyncHelper(const Model::CompareFacesRequest& request, const CompareFacesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void CreateCollectionAsyncHelper(const Model::CreateCollectionRequest& request, const CreateCollectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void CreateProjectAsyncHelper(const Model::CreateProjectRequest& request, const CreateProjectResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void CreateProjectVersionAsyncHelper(const Model::CreateProjectVersionRequest& request, const CreateProjectVersionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void CreateStreamProcessorAsyncHelper(const Model::CreateStreamProcessorRequest& request, const CreateStreamProcessorResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DeleteCollectionAsyncHelper(const Model::DeleteCollectionRequest& request, const DeleteCollectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DeleteFacesAsyncHelper(const Model::DeleteFacesRequest& request, const DeleteFacesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DeleteProjectAsyncHelper(const Model::DeleteProjectRequest& request, const DeleteProjectResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DeleteProjectVersionAsyncHelper(const Model::DeleteProjectVersionRequest& request, const DeleteProjectVersionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DeleteStreamProcessorAsyncHelper(const Model::DeleteStreamProcessorRequest& request, const DeleteStreamProcessorResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DescribeCollectionAsyncHelper(const Model::DescribeCollectionRequest& request, const DescribeCollectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DescribeProjectVersionsAsyncHelper(const Model::DescribeProjectVersionsRequest& request, const DescribeProjectVersionsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DescribeProjectsAsyncHelper(const Model::DescribeProjectsRequest& request, const DescribeProjectsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DescribeStreamProcessorAsyncHelper(const Model::DescribeStreamProcessorRequest& request, const DescribeStreamProcessorResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DetectCustomLabelsAsyncHelper(const Model::DetectCustomLabelsRequest& request, const DetectCustomLabelsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DetectFacesAsyncHelper(const Model::DetectFacesRequest& request, const DetectFacesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DetectLabelsAsyncHelper(const Model::DetectLabelsRequest& request, const DetectLabelsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DetectModerationLabelsAsyncHelper(const Model::DetectModerationLabelsRequest& request, const DetectModerationLabelsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DetectTextAsyncHelper(const Model::DetectTextRequest& request, const DetectTextResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void GetCelebrityInfoAsyncHelper(const Model::GetCelebrityInfoRequest& request, const GetCelebrityInfoResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void GetCelebrityRecognitionAsyncHelper(const Model::GetCelebrityRecognitionRequest& request, const GetCelebrityRecognitionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void GetContentModerationAsyncHelper(const Model::GetContentModerationRequest& request, const GetContentModerationResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void GetFaceDetectionAsyncHelper(const Model::GetFaceDetectionRequest& request, const GetFaceDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void GetFaceSearchAsyncHelper(const Model::GetFaceSearchRequest& request, const GetFaceSearchResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void GetLabelDetectionAsyncHelper(const Model::GetLabelDetectionRequest& request, const GetLabelDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void GetPersonTrackingAsyncHelper(const Model::GetPersonTrackingRequest& request, const GetPersonTrackingResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void GetSegmentDetectionAsyncHelper(const Model::GetSegmentDetectionRequest& request, const GetSegmentDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void GetTextDetectionAsyncHelper(const Model::GetTextDetectionRequest& request, const GetTextDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void IndexFacesAsyncHelper(const Model::IndexFacesRequest& request, const IndexFacesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void ListCollectionsAsyncHelper(const Model::ListCollectionsRequest& request, const ListCollectionsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void ListFacesAsyncHelper(const Model::ListFacesRequest& request, const ListFacesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void ListStreamProcessorsAsyncHelper(const Model::ListStreamProcessorsRequest& request, const ListStreamProcessorsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void RecognizeCelebritiesAsyncHelper(const Model::RecognizeCelebritiesRequest& request, const RecognizeCelebritiesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void SearchFacesAsyncHelper(const Model::SearchFacesRequest& request, const SearchFacesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void SearchFacesByImageAsyncHelper(const Model::SearchFacesByImageRequest& request, const SearchFacesByImageResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void StartCelebrityRecognitionAsyncHelper(const Model::StartCelebrityRecognitionRequest& request, const StartCelebrityRecognitionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void StartContentModerationAsyncHelper(const Model::StartContentModerationRequest& request, const StartContentModerationResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void StartFaceDetectionAsyncHelper(const Model::StartFaceDetectionRequest& request, const StartFaceDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void StartFaceSearchAsyncHelper(const Model::StartFaceSearchRequest& request, const StartFaceSearchResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void StartLabelDetectionAsyncHelper(const Model::StartLabelDetectionRequest& request, const StartLabelDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void StartPersonTrackingAsyncHelper(const Model::StartPersonTrackingRequest& request, const StartPersonTrackingResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void StartProjectVersionAsyncHelper(const Model::StartProjectVersionRequest& request, const StartProjectVersionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void StartSegmentDetectionAsyncHelper(const Model::StartSegmentDetectionRequest& request, const StartSegmentDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void StartStreamProcessorAsyncHelper(const Model::StartStreamProcessorRequest& request, const StartStreamProcessorResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void StartTextDetectionAsyncHelper(const Model::StartTextDetectionRequest& request, const StartTextDetectionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void StopProjectVersionAsyncHelper(const Model::StopProjectVersionRequest& request, const StopProjectVersionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void StopStreamProcessorAsyncHelper(const Model::StopStreamProcessorRequest& request, const StopStreamProcessorResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
Aws::String m_uri;
Aws::String m_configScheme;
std::shared_ptr<Aws::Utils::Threading::Executor> m_executor;
};
} // namespace Rekognition
} // namespace Aws