This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
pxz-hos-client-cpp-module/support/aws-sdk-cpp-master/aws-cpp-sdk-machinelearning/include/aws/machinelearning/model/CreateMLModelRequest.h

845 lines
51 KiB
C++

/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include <aws/machinelearning/MachineLearning_EXPORTS.h>
#include <aws/machinelearning/MachineLearningRequest.h>
#include <aws/core/utils/memory/stl/AWSString.h>
#include <aws/machinelearning/model/MLModelType.h>
#include <aws/core/utils/memory/stl/AWSMap.h>
#include <utility>
namespace Aws
{
namespace MachineLearning
{
namespace Model
{
/**
*/
class AWS_MACHINELEARNING_API CreateMLModelRequest : public MachineLearningRequest
{
public:
CreateMLModelRequest();
// Service request name is the Operation name which will send this request out,
// each operation should has unique request name, so that we can get operation's name from this request.
// Note: this is not true for response, multiple operations may have the same response name,
// so we can not get operation's name from response.
inline virtual const char* GetServiceRequestName() const override { return "CreateMLModel"; }
Aws::String SerializePayload() const override;
Aws::Http::HeaderValueCollection GetRequestSpecificHeaders() const override;
/**
* <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>.</p>
*/
inline const Aws::String& GetMLModelId() const{ return m_mLModelId; }
/**
* <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>.</p>
*/
inline bool MLModelIdHasBeenSet() const { return m_mLModelIdHasBeenSet; }
/**
* <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>.</p>
*/
inline void SetMLModelId(const Aws::String& value) { m_mLModelIdHasBeenSet = true; m_mLModelId = value; }
/**
* <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>.</p>
*/
inline void SetMLModelId(Aws::String&& value) { m_mLModelIdHasBeenSet = true; m_mLModelId = std::move(value); }
/**
* <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>.</p>
*/
inline void SetMLModelId(const char* value) { m_mLModelIdHasBeenSet = true; m_mLModelId.assign(value); }
/**
* <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>.</p>
*/
inline CreateMLModelRequest& WithMLModelId(const Aws::String& value) { SetMLModelId(value); return *this;}
/**
* <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>.</p>
*/
inline CreateMLModelRequest& WithMLModelId(Aws::String&& value) { SetMLModelId(std::move(value)); return *this;}
/**
* <p>A user-supplied ID that uniquely identifies the <code>MLModel</code>.</p>
*/
inline CreateMLModelRequest& WithMLModelId(const char* value) { SetMLModelId(value); return *this;}
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline const Aws::String& GetMLModelName() const{ return m_mLModelName; }
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline bool MLModelNameHasBeenSet() const { return m_mLModelNameHasBeenSet; }
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline void SetMLModelName(const Aws::String& value) { m_mLModelNameHasBeenSet = true; m_mLModelName = value; }
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline void SetMLModelName(Aws::String&& value) { m_mLModelNameHasBeenSet = true; m_mLModelName = std::move(value); }
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline void SetMLModelName(const char* value) { m_mLModelNameHasBeenSet = true; m_mLModelName.assign(value); }
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline CreateMLModelRequest& WithMLModelName(const Aws::String& value) { SetMLModelName(value); return *this;}
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline CreateMLModelRequest& WithMLModelName(Aws::String&& value) { SetMLModelName(std::move(value)); return *this;}
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline CreateMLModelRequest& WithMLModelName(const char* value) { SetMLModelName(value); return *this;}
/**
* <p>The category of supervised learning that this <code>MLModel</code> will
* address. Choose from the following types:</p> <ul> <li>Choose
* <code>REGRESSION</code> if the <code>MLModel</code> will be used to predict a
* numeric value.</li> <li>Choose <code>BINARY</code> if the <code>MLModel</code>
* result has two possible values.</li> <li>Choose <code>MULTICLASS</code> if the
* <code>MLModel</code> result has a limited number of values. </li> </ul> <p> For
* more information, see the <a
* href="http://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine
* Learning Developer Guide</a>.</p>
*/
inline const MLModelType& GetMLModelType() const{ return m_mLModelType; }
/**
* <p>The category of supervised learning that this <code>MLModel</code> will
* address. Choose from the following types:</p> <ul> <li>Choose
* <code>REGRESSION</code> if the <code>MLModel</code> will be used to predict a
* numeric value.</li> <li>Choose <code>BINARY</code> if the <code>MLModel</code>
* result has two possible values.</li> <li>Choose <code>MULTICLASS</code> if the
* <code>MLModel</code> result has a limited number of values. </li> </ul> <p> For
* more information, see the <a
* href="http://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine
* Learning Developer Guide</a>.</p>
*/
inline bool MLModelTypeHasBeenSet() const { return m_mLModelTypeHasBeenSet; }
/**
* <p>The category of supervised learning that this <code>MLModel</code> will
* address. Choose from the following types:</p> <ul> <li>Choose
* <code>REGRESSION</code> if the <code>MLModel</code> will be used to predict a
* numeric value.</li> <li>Choose <code>BINARY</code> if the <code>MLModel</code>
* result has two possible values.</li> <li>Choose <code>MULTICLASS</code> if the
* <code>MLModel</code> result has a limited number of values. </li> </ul> <p> For
* more information, see the <a
* href="http://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine
* Learning Developer Guide</a>.</p>
*/
inline void SetMLModelType(const MLModelType& value) { m_mLModelTypeHasBeenSet = true; m_mLModelType = value; }
/**
* <p>The category of supervised learning that this <code>MLModel</code> will
* address. Choose from the following types:</p> <ul> <li>Choose
* <code>REGRESSION</code> if the <code>MLModel</code> will be used to predict a
* numeric value.</li> <li>Choose <code>BINARY</code> if the <code>MLModel</code>
* result has two possible values.</li> <li>Choose <code>MULTICLASS</code> if the
* <code>MLModel</code> result has a limited number of values. </li> </ul> <p> For
* more information, see the <a
* href="http://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine
* Learning Developer Guide</a>.</p>
*/
inline void SetMLModelType(MLModelType&& value) { m_mLModelTypeHasBeenSet = true; m_mLModelType = std::move(value); }
/**
* <p>The category of supervised learning that this <code>MLModel</code> will
* address. Choose from the following types:</p> <ul> <li>Choose
* <code>REGRESSION</code> if the <code>MLModel</code> will be used to predict a
* numeric value.</li> <li>Choose <code>BINARY</code> if the <code>MLModel</code>
* result has two possible values.</li> <li>Choose <code>MULTICLASS</code> if the
* <code>MLModel</code> result has a limited number of values. </li> </ul> <p> For
* more information, see the <a
* href="http://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine
* Learning Developer Guide</a>.</p>
*/
inline CreateMLModelRequest& WithMLModelType(const MLModelType& value) { SetMLModelType(value); return *this;}
/**
* <p>The category of supervised learning that this <code>MLModel</code> will
* address. Choose from the following types:</p> <ul> <li>Choose
* <code>REGRESSION</code> if the <code>MLModel</code> will be used to predict a
* numeric value.</li> <li>Choose <code>BINARY</code> if the <code>MLModel</code>
* result has two possible values.</li> <li>Choose <code>MULTICLASS</code> if the
* <code>MLModel</code> result has a limited number of values. </li> </ul> <p> For
* more information, see the <a
* href="http://docs.aws.amazon.com/machine-learning/latest/dg">Amazon Machine
* Learning Developer Guide</a>.</p>
*/
inline CreateMLModelRequest& WithMLModelType(MLModelType&& value) { SetMLModelType(std::move(value)); return *this;}
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li> <li>
* <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data.
* Shuffling the data improves a model's ability to find the optimal solution for a
* variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>. We <?oxy_insert_start
* author="laurama" timestamp="20160329T131121-0700">strongly recommend that you
* shuffle your data.<?oxy_insert_end></p> </li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to zero, resulting in a sparse feature set. If you
* use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline const Aws::Map<Aws::String, Aws::String>& GetParameters() const{ return m_parameters; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li> <li>
* <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data.
* Shuffling the data improves a model's ability to find the optimal solution for a
* variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>. We <?oxy_insert_start
* author="laurama" timestamp="20160329T131121-0700">strongly recommend that you
* shuffle your data.<?oxy_insert_end></p> </li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to zero, resulting in a sparse feature set. If you
* use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline bool ParametersHasBeenSet() const { return m_parametersHasBeenSet; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li> <li>
* <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data.
* Shuffling the data improves a model's ability to find the optimal solution for a
* variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>. We <?oxy_insert_start
* author="laurama" timestamp="20160329T131121-0700">strongly recommend that you
* shuffle your data.<?oxy_insert_end></p> </li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to zero, resulting in a sparse feature set. If you
* use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline void SetParameters(const Aws::Map<Aws::String, Aws::String>& value) { m_parametersHasBeenSet = true; m_parameters = value; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li> <li>
* <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data.
* Shuffling the data improves a model's ability to find the optimal solution for a
* variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>. We <?oxy_insert_start
* author="laurama" timestamp="20160329T131121-0700">strongly recommend that you
* shuffle your data.<?oxy_insert_end></p> </li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to zero, resulting in a sparse feature set. If you
* use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline void SetParameters(Aws::Map<Aws::String, Aws::String>&& value) { m_parametersHasBeenSet = true; m_parameters = std::move(value); }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li> <li>
* <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data.
* Shuffling the data improves a model's ability to find the optimal solution for a
* variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>. We <?oxy_insert_start
* author="laurama" timestamp="20160329T131121-0700">strongly recommend that you
* shuffle your data.<?oxy_insert_end></p> </li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to zero, resulting in a sparse feature set. If you
* use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline CreateMLModelRequest& WithParameters(const Aws::Map<Aws::String, Aws::String>& value) { SetParameters(value); return *this;}
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li> <li>
* <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data.
* Shuffling the data improves a model's ability to find the optimal solution for a
* variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>. We <?oxy_insert_start
* author="laurama" timestamp="20160329T131121-0700">strongly recommend that you
* shuffle your data.<?oxy_insert_end></p> </li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to zero, resulting in a sparse feature set. If you
* use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline CreateMLModelRequest& WithParameters(Aws::Map<Aws::String, Aws::String>&& value) { SetParameters(std::move(value)); return *this;}
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li> <li>
* <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data.
* Shuffling the data improves a model's ability to find the optimal solution for a
* variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>. We <?oxy_insert_start
* author="laurama" timestamp="20160329T131121-0700">strongly recommend that you
* shuffle your data.<?oxy_insert_end></p> </li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to zero, resulting in a sparse feature set. If you
* use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline CreateMLModelRequest& AddParameters(const Aws::String& key, const Aws::String& value) { m_parametersHasBeenSet = true; m_parameters.emplace(key, value); return *this; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li> <li>
* <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data.
* Shuffling the data improves a model's ability to find the optimal solution for a
* variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>. We <?oxy_insert_start
* author="laurama" timestamp="20160329T131121-0700">strongly recommend that you
* shuffle your data.<?oxy_insert_end></p> </li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to zero, resulting in a sparse feature set. If you
* use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline CreateMLModelRequest& AddParameters(Aws::String&& key, const Aws::String& value) { m_parametersHasBeenSet = true; m_parameters.emplace(std::move(key), value); return *this; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li> <li>
* <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data.
* Shuffling the data improves a model's ability to find the optimal solution for a
* variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>. We <?oxy_insert_start
* author="laurama" timestamp="20160329T131121-0700">strongly recommend that you
* shuffle your data.<?oxy_insert_end></p> </li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to zero, resulting in a sparse feature set. If you
* use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline CreateMLModelRequest& AddParameters(const Aws::String& key, Aws::String&& value) { m_parametersHasBeenSet = true; m_parameters.emplace(key, std::move(value)); return *this; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li> <li>
* <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data.
* Shuffling the data improves a model's ability to find the optimal solution for a
* variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>. We <?oxy_insert_start
* author="laurama" timestamp="20160329T131121-0700">strongly recommend that you
* shuffle your data.<?oxy_insert_end></p> </li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to zero, resulting in a sparse feature set. If you
* use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline CreateMLModelRequest& AddParameters(Aws::String&& key, Aws::String&& value) { m_parametersHasBeenSet = true; m_parameters.emplace(std::move(key), std::move(value)); return *this; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li> <li>
* <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data.
* Shuffling the data improves a model's ability to find the optimal solution for a
* variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>. We <?oxy_insert_start
* author="laurama" timestamp="20160329T131121-0700">strongly recommend that you
* shuffle your data.<?oxy_insert_end></p> </li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to zero, resulting in a sparse feature set. If you
* use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline CreateMLModelRequest& AddParameters(const char* key, Aws::String&& value) { m_parametersHasBeenSet = true; m_parameters.emplace(key, std::move(value)); return *this; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li> <li>
* <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data.
* Shuffling the data improves a model's ability to find the optimal solution for a
* variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>. We <?oxy_insert_start
* author="laurama" timestamp="20160329T131121-0700">strongly recommend that you
* shuffle your data.<?oxy_insert_end></p> </li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to zero, resulting in a sparse feature set. If you
* use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline CreateMLModelRequest& AddParameters(Aws::String&& key, const char* value) { m_parametersHasBeenSet = true; m_parameters.emplace(std::move(key), value); return *this; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li> <li>
* <p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training data.
* Shuffling the data improves a model's ability to find the optimal solution for a
* variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>. We <?oxy_insert_start
* author="laurama" timestamp="20160329T131121-0700">strongly recommend that you
* shuffle your data.<?oxy_insert_end></p> </li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to zero, resulting in a sparse feature set. If you
* use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm. It controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline CreateMLModelRequest& AddParameters(const char* key, const char* value) { m_parametersHasBeenSet = true; m_parameters.emplace(key, value); return *this; }
/**
* <p>The <code>DataSource</code> that points to the training data.</p>
*/
inline const Aws::String& GetTrainingDataSourceId() const{ return m_trainingDataSourceId; }
/**
* <p>The <code>DataSource</code> that points to the training data.</p>
*/
inline bool TrainingDataSourceIdHasBeenSet() const { return m_trainingDataSourceIdHasBeenSet; }
/**
* <p>The <code>DataSource</code> that points to the training data.</p>
*/
inline void SetTrainingDataSourceId(const Aws::String& value) { m_trainingDataSourceIdHasBeenSet = true; m_trainingDataSourceId = value; }
/**
* <p>The <code>DataSource</code> that points to the training data.</p>
*/
inline void SetTrainingDataSourceId(Aws::String&& value) { m_trainingDataSourceIdHasBeenSet = true; m_trainingDataSourceId = std::move(value); }
/**
* <p>The <code>DataSource</code> that points to the training data.</p>
*/
inline void SetTrainingDataSourceId(const char* value) { m_trainingDataSourceIdHasBeenSet = true; m_trainingDataSourceId.assign(value); }
/**
* <p>The <code>DataSource</code> that points to the training data.</p>
*/
inline CreateMLModelRequest& WithTrainingDataSourceId(const Aws::String& value) { SetTrainingDataSourceId(value); return *this;}
/**
* <p>The <code>DataSource</code> that points to the training data.</p>
*/
inline CreateMLModelRequest& WithTrainingDataSourceId(Aws::String&& value) { SetTrainingDataSourceId(std::move(value)); return *this;}
/**
* <p>The <code>DataSource</code> that points to the training data.</p>
*/
inline CreateMLModelRequest& WithTrainingDataSourceId(const char* value) { SetTrainingDataSourceId(value); return *this;}
/**
* <p>The data recipe for creating the <code>MLModel</code>. You must specify
* either the recipe or its URI. If you don't specify a recipe or its URI, Amazon
* ML creates a default.</p>
*/
inline const Aws::String& GetRecipe() const{ return m_recipe; }
/**
* <p>The data recipe for creating the <code>MLModel</code>. You must specify
* either the recipe or its URI. If you don't specify a recipe or its URI, Amazon
* ML creates a default.</p>
*/
inline bool RecipeHasBeenSet() const { return m_recipeHasBeenSet; }
/**
* <p>The data recipe for creating the <code>MLModel</code>. You must specify
* either the recipe or its URI. If you don't specify a recipe or its URI, Amazon
* ML creates a default.</p>
*/
inline void SetRecipe(const Aws::String& value) { m_recipeHasBeenSet = true; m_recipe = value; }
/**
* <p>The data recipe for creating the <code>MLModel</code>. You must specify
* either the recipe or its URI. If you don't specify a recipe or its URI, Amazon
* ML creates a default.</p>
*/
inline void SetRecipe(Aws::String&& value) { m_recipeHasBeenSet = true; m_recipe = std::move(value); }
/**
* <p>The data recipe for creating the <code>MLModel</code>. You must specify
* either the recipe or its URI. If you don't specify a recipe or its URI, Amazon
* ML creates a default.</p>
*/
inline void SetRecipe(const char* value) { m_recipeHasBeenSet = true; m_recipe.assign(value); }
/**
* <p>The data recipe for creating the <code>MLModel</code>. You must specify
* either the recipe or its URI. If you don't specify a recipe or its URI, Amazon
* ML creates a default.</p>
*/
inline CreateMLModelRequest& WithRecipe(const Aws::String& value) { SetRecipe(value); return *this;}
/**
* <p>The data recipe for creating the <code>MLModel</code>. You must specify
* either the recipe or its URI. If you don't specify a recipe or its URI, Amazon
* ML creates a default.</p>
*/
inline CreateMLModelRequest& WithRecipe(Aws::String&& value) { SetRecipe(std::move(value)); return *this;}
/**
* <p>The data recipe for creating the <code>MLModel</code>. You must specify
* either the recipe or its URI. If you don't specify a recipe or its URI, Amazon
* ML creates a default.</p>
*/
inline CreateMLModelRequest& WithRecipe(const char* value) { SetRecipe(value); return *this;}
/**
* <p>The Amazon Simple Storage Service (Amazon S3) location and file name that
* contains the <code>MLModel</code> recipe. You must specify either the recipe or
* its URI. If you don't specify a recipe or its URI, Amazon ML creates a
* default.</p>
*/
inline const Aws::String& GetRecipeUri() const{ return m_recipeUri; }
/**
* <p>The Amazon Simple Storage Service (Amazon S3) location and file name that
* contains the <code>MLModel</code> recipe. You must specify either the recipe or
* its URI. If you don't specify a recipe or its URI, Amazon ML creates a
* default.</p>
*/
inline bool RecipeUriHasBeenSet() const { return m_recipeUriHasBeenSet; }
/**
* <p>The Amazon Simple Storage Service (Amazon S3) location and file name that
* contains the <code>MLModel</code> recipe. You must specify either the recipe or
* its URI. If you don't specify a recipe or its URI, Amazon ML creates a
* default.</p>
*/
inline void SetRecipeUri(const Aws::String& value) { m_recipeUriHasBeenSet = true; m_recipeUri = value; }
/**
* <p>The Amazon Simple Storage Service (Amazon S3) location and file name that
* contains the <code>MLModel</code> recipe. You must specify either the recipe or
* its URI. If you don't specify a recipe or its URI, Amazon ML creates a
* default.</p>
*/
inline void SetRecipeUri(Aws::String&& value) { m_recipeUriHasBeenSet = true; m_recipeUri = std::move(value); }
/**
* <p>The Amazon Simple Storage Service (Amazon S3) location and file name that
* contains the <code>MLModel</code> recipe. You must specify either the recipe or
* its URI. If you don't specify a recipe or its URI, Amazon ML creates a
* default.</p>
*/
inline void SetRecipeUri(const char* value) { m_recipeUriHasBeenSet = true; m_recipeUri.assign(value); }
/**
* <p>The Amazon Simple Storage Service (Amazon S3) location and file name that
* contains the <code>MLModel</code> recipe. You must specify either the recipe or
* its URI. If you don't specify a recipe or its URI, Amazon ML creates a
* default.</p>
*/
inline CreateMLModelRequest& WithRecipeUri(const Aws::String& value) { SetRecipeUri(value); return *this;}
/**
* <p>The Amazon Simple Storage Service (Amazon S3) location and file name that
* contains the <code>MLModel</code> recipe. You must specify either the recipe or
* its URI. If you don't specify a recipe or its URI, Amazon ML creates a
* default.</p>
*/
inline CreateMLModelRequest& WithRecipeUri(Aws::String&& value) { SetRecipeUri(std::move(value)); return *this;}
/**
* <p>The Amazon Simple Storage Service (Amazon S3) location and file name that
* contains the <code>MLModel</code> recipe. You must specify either the recipe or
* its URI. If you don't specify a recipe or its URI, Amazon ML creates a
* default.</p>
*/
inline CreateMLModelRequest& WithRecipeUri(const char* value) { SetRecipeUri(value); return *this;}
private:
Aws::String m_mLModelId;
bool m_mLModelIdHasBeenSet;
Aws::String m_mLModelName;
bool m_mLModelNameHasBeenSet;
MLModelType m_mLModelType;
bool m_mLModelTypeHasBeenSet;
Aws::Map<Aws::String, Aws::String> m_parameters;
bool m_parametersHasBeenSet;
Aws::String m_trainingDataSourceId;
bool m_trainingDataSourceIdHasBeenSet;
Aws::String m_recipe;
bool m_recipeHasBeenSet;
Aws::String m_recipeUri;
bool m_recipeUriHasBeenSet;
};
} // namespace Model
} // namespace MachineLearning
} // namespace Aws