This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
pxz-hos-client-cpp-module/support/aws-sdk-cpp-master/aws-cpp-sdk-machinelearning/include/aws/machinelearning/MachineLearningClient.h

1519 lines
107 KiB
C++

/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include <aws/machinelearning/MachineLearning_EXPORTS.h>
#include <aws/machinelearning/MachineLearningErrors.h>
#include <aws/core/client/AWSError.h>
#include <aws/core/client/ClientConfiguration.h>
#include <aws/core/client/AWSClient.h>
#include <aws/core/utils/memory/stl/AWSString.h>
#include <aws/core/utils/json/JsonSerializer.h>
#include <aws/machinelearning/model/AddTagsResult.h>
#include <aws/machinelearning/model/CreateBatchPredictionResult.h>
#include <aws/machinelearning/model/CreateDataSourceFromRDSResult.h>
#include <aws/machinelearning/model/CreateDataSourceFromRedshiftResult.h>
#include <aws/machinelearning/model/CreateDataSourceFromS3Result.h>
#include <aws/machinelearning/model/CreateEvaluationResult.h>
#include <aws/machinelearning/model/CreateMLModelResult.h>
#include <aws/machinelearning/model/CreateRealtimeEndpointResult.h>
#include <aws/machinelearning/model/DeleteBatchPredictionResult.h>
#include <aws/machinelearning/model/DeleteDataSourceResult.h>
#include <aws/machinelearning/model/DeleteEvaluationResult.h>
#include <aws/machinelearning/model/DeleteMLModelResult.h>
#include <aws/machinelearning/model/DeleteRealtimeEndpointResult.h>
#include <aws/machinelearning/model/DeleteTagsResult.h>
#include <aws/machinelearning/model/DescribeBatchPredictionsResult.h>
#include <aws/machinelearning/model/DescribeDataSourcesResult.h>
#include <aws/machinelearning/model/DescribeEvaluationsResult.h>
#include <aws/machinelearning/model/DescribeMLModelsResult.h>
#include <aws/machinelearning/model/DescribeTagsResult.h>
#include <aws/machinelearning/model/GetBatchPredictionResult.h>
#include <aws/machinelearning/model/GetDataSourceResult.h>
#include <aws/machinelearning/model/GetEvaluationResult.h>
#include <aws/machinelearning/model/GetMLModelResult.h>
#include <aws/machinelearning/model/PredictResult.h>
#include <aws/machinelearning/model/UpdateBatchPredictionResult.h>
#include <aws/machinelearning/model/UpdateDataSourceResult.h>
#include <aws/machinelearning/model/UpdateEvaluationResult.h>
#include <aws/machinelearning/model/UpdateMLModelResult.h>
#include <aws/core/client/AsyncCallerContext.h>
#include <aws/core/http/HttpTypes.h>
#include <future>
#include <functional>
namespace Aws
{
namespace Http
{
class HttpClient;
class HttpClientFactory;
} // namespace Http
namespace Utils
{
template< typename R, typename E> class Outcome;
namespace Threading
{
class Executor;
} // namespace Threading
} // namespace Utils
namespace Auth
{
class AWSCredentials;
class AWSCredentialsProvider;
} // namespace Auth
namespace Client
{
class RetryStrategy;
} // namespace Client
namespace MachineLearning
{
namespace Model
{
class AddTagsRequest;
class CreateBatchPredictionRequest;
class CreateDataSourceFromRDSRequest;
class CreateDataSourceFromRedshiftRequest;
class CreateDataSourceFromS3Request;
class CreateEvaluationRequest;
class CreateMLModelRequest;
class CreateRealtimeEndpointRequest;
class DeleteBatchPredictionRequest;
class DeleteDataSourceRequest;
class DeleteEvaluationRequest;
class DeleteMLModelRequest;
class DeleteRealtimeEndpointRequest;
class DeleteTagsRequest;
class DescribeBatchPredictionsRequest;
class DescribeDataSourcesRequest;
class DescribeEvaluationsRequest;
class DescribeMLModelsRequest;
class DescribeTagsRequest;
class GetBatchPredictionRequest;
class GetDataSourceRequest;
class GetEvaluationRequest;
class GetMLModelRequest;
class PredictRequest;
class UpdateBatchPredictionRequest;
class UpdateDataSourceRequest;
class UpdateEvaluationRequest;
class UpdateMLModelRequest;
typedef Aws::Utils::Outcome<AddTagsResult, MachineLearningError> AddTagsOutcome;
typedef Aws::Utils::Outcome<CreateBatchPredictionResult, MachineLearningError> CreateBatchPredictionOutcome;
typedef Aws::Utils::Outcome<CreateDataSourceFromRDSResult, MachineLearningError> CreateDataSourceFromRDSOutcome;
typedef Aws::Utils::Outcome<CreateDataSourceFromRedshiftResult, MachineLearningError> CreateDataSourceFromRedshiftOutcome;
typedef Aws::Utils::Outcome<CreateDataSourceFromS3Result, MachineLearningError> CreateDataSourceFromS3Outcome;
typedef Aws::Utils::Outcome<CreateEvaluationResult, MachineLearningError> CreateEvaluationOutcome;
typedef Aws::Utils::Outcome<CreateMLModelResult, MachineLearningError> CreateMLModelOutcome;
typedef Aws::Utils::Outcome<CreateRealtimeEndpointResult, MachineLearningError> CreateRealtimeEndpointOutcome;
typedef Aws::Utils::Outcome<DeleteBatchPredictionResult, MachineLearningError> DeleteBatchPredictionOutcome;
typedef Aws::Utils::Outcome<DeleteDataSourceResult, MachineLearningError> DeleteDataSourceOutcome;
typedef Aws::Utils::Outcome<DeleteEvaluationResult, MachineLearningError> DeleteEvaluationOutcome;
typedef Aws::Utils::Outcome<DeleteMLModelResult, MachineLearningError> DeleteMLModelOutcome;
typedef Aws::Utils::Outcome<DeleteRealtimeEndpointResult, MachineLearningError> DeleteRealtimeEndpointOutcome;
typedef Aws::Utils::Outcome<DeleteTagsResult, MachineLearningError> DeleteTagsOutcome;
typedef Aws::Utils::Outcome<DescribeBatchPredictionsResult, MachineLearningError> DescribeBatchPredictionsOutcome;
typedef Aws::Utils::Outcome<DescribeDataSourcesResult, MachineLearningError> DescribeDataSourcesOutcome;
typedef Aws::Utils::Outcome<DescribeEvaluationsResult, MachineLearningError> DescribeEvaluationsOutcome;
typedef Aws::Utils::Outcome<DescribeMLModelsResult, MachineLearningError> DescribeMLModelsOutcome;
typedef Aws::Utils::Outcome<DescribeTagsResult, MachineLearningError> DescribeTagsOutcome;
typedef Aws::Utils::Outcome<GetBatchPredictionResult, MachineLearningError> GetBatchPredictionOutcome;
typedef Aws::Utils::Outcome<GetDataSourceResult, MachineLearningError> GetDataSourceOutcome;
typedef Aws::Utils::Outcome<GetEvaluationResult, MachineLearningError> GetEvaluationOutcome;
typedef Aws::Utils::Outcome<GetMLModelResult, MachineLearningError> GetMLModelOutcome;
typedef Aws::Utils::Outcome<PredictResult, MachineLearningError> PredictOutcome;
typedef Aws::Utils::Outcome<UpdateBatchPredictionResult, MachineLearningError> UpdateBatchPredictionOutcome;
typedef Aws::Utils::Outcome<UpdateDataSourceResult, MachineLearningError> UpdateDataSourceOutcome;
typedef Aws::Utils::Outcome<UpdateEvaluationResult, MachineLearningError> UpdateEvaluationOutcome;
typedef Aws::Utils::Outcome<UpdateMLModelResult, MachineLearningError> UpdateMLModelOutcome;
typedef std::future<AddTagsOutcome> AddTagsOutcomeCallable;
typedef std::future<CreateBatchPredictionOutcome> CreateBatchPredictionOutcomeCallable;
typedef std::future<CreateDataSourceFromRDSOutcome> CreateDataSourceFromRDSOutcomeCallable;
typedef std::future<CreateDataSourceFromRedshiftOutcome> CreateDataSourceFromRedshiftOutcomeCallable;
typedef std::future<CreateDataSourceFromS3Outcome> CreateDataSourceFromS3OutcomeCallable;
typedef std::future<CreateEvaluationOutcome> CreateEvaluationOutcomeCallable;
typedef std::future<CreateMLModelOutcome> CreateMLModelOutcomeCallable;
typedef std::future<CreateRealtimeEndpointOutcome> CreateRealtimeEndpointOutcomeCallable;
typedef std::future<DeleteBatchPredictionOutcome> DeleteBatchPredictionOutcomeCallable;
typedef std::future<DeleteDataSourceOutcome> DeleteDataSourceOutcomeCallable;
typedef std::future<DeleteEvaluationOutcome> DeleteEvaluationOutcomeCallable;
typedef std::future<DeleteMLModelOutcome> DeleteMLModelOutcomeCallable;
typedef std::future<DeleteRealtimeEndpointOutcome> DeleteRealtimeEndpointOutcomeCallable;
typedef std::future<DeleteTagsOutcome> DeleteTagsOutcomeCallable;
typedef std::future<DescribeBatchPredictionsOutcome> DescribeBatchPredictionsOutcomeCallable;
typedef std::future<DescribeDataSourcesOutcome> DescribeDataSourcesOutcomeCallable;
typedef std::future<DescribeEvaluationsOutcome> DescribeEvaluationsOutcomeCallable;
typedef std::future<DescribeMLModelsOutcome> DescribeMLModelsOutcomeCallable;
typedef std::future<DescribeTagsOutcome> DescribeTagsOutcomeCallable;
typedef std::future<GetBatchPredictionOutcome> GetBatchPredictionOutcomeCallable;
typedef std::future<GetDataSourceOutcome> GetDataSourceOutcomeCallable;
typedef std::future<GetEvaluationOutcome> GetEvaluationOutcomeCallable;
typedef std::future<GetMLModelOutcome> GetMLModelOutcomeCallable;
typedef std::future<PredictOutcome> PredictOutcomeCallable;
typedef std::future<UpdateBatchPredictionOutcome> UpdateBatchPredictionOutcomeCallable;
typedef std::future<UpdateDataSourceOutcome> UpdateDataSourceOutcomeCallable;
typedef std::future<UpdateEvaluationOutcome> UpdateEvaluationOutcomeCallable;
typedef std::future<UpdateMLModelOutcome> UpdateMLModelOutcomeCallable;
} // namespace Model
class MachineLearningClient;
typedef std::function<void(const MachineLearningClient*, const Model::AddTagsRequest&, const Model::AddTagsOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > AddTagsResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::CreateBatchPredictionRequest&, const Model::CreateBatchPredictionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > CreateBatchPredictionResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::CreateDataSourceFromRDSRequest&, const Model::CreateDataSourceFromRDSOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > CreateDataSourceFromRDSResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::CreateDataSourceFromRedshiftRequest&, const Model::CreateDataSourceFromRedshiftOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > CreateDataSourceFromRedshiftResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::CreateDataSourceFromS3Request&, const Model::CreateDataSourceFromS3Outcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > CreateDataSourceFromS3ResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::CreateEvaluationRequest&, const Model::CreateEvaluationOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > CreateEvaluationResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::CreateMLModelRequest&, const Model::CreateMLModelOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > CreateMLModelResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::CreateRealtimeEndpointRequest&, const Model::CreateRealtimeEndpointOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > CreateRealtimeEndpointResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::DeleteBatchPredictionRequest&, const Model::DeleteBatchPredictionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DeleteBatchPredictionResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::DeleteDataSourceRequest&, const Model::DeleteDataSourceOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DeleteDataSourceResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::DeleteEvaluationRequest&, const Model::DeleteEvaluationOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DeleteEvaluationResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::DeleteMLModelRequest&, const Model::DeleteMLModelOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DeleteMLModelResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::DeleteRealtimeEndpointRequest&, const Model::DeleteRealtimeEndpointOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DeleteRealtimeEndpointResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::DeleteTagsRequest&, const Model::DeleteTagsOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DeleteTagsResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::DescribeBatchPredictionsRequest&, const Model::DescribeBatchPredictionsOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DescribeBatchPredictionsResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::DescribeDataSourcesRequest&, const Model::DescribeDataSourcesOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DescribeDataSourcesResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::DescribeEvaluationsRequest&, const Model::DescribeEvaluationsOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DescribeEvaluationsResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::DescribeMLModelsRequest&, const Model::DescribeMLModelsOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DescribeMLModelsResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::DescribeTagsRequest&, const Model::DescribeTagsOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > DescribeTagsResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::GetBatchPredictionRequest&, const Model::GetBatchPredictionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > GetBatchPredictionResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::GetDataSourceRequest&, const Model::GetDataSourceOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > GetDataSourceResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::GetEvaluationRequest&, const Model::GetEvaluationOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > GetEvaluationResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::GetMLModelRequest&, const Model::GetMLModelOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > GetMLModelResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::PredictRequest&, const Model::PredictOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > PredictResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::UpdateBatchPredictionRequest&, const Model::UpdateBatchPredictionOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > UpdateBatchPredictionResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::UpdateDataSourceRequest&, const Model::UpdateDataSourceOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > UpdateDataSourceResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::UpdateEvaluationRequest&, const Model::UpdateEvaluationOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > UpdateEvaluationResponseReceivedHandler;
typedef std::function<void(const MachineLearningClient*, const Model::UpdateMLModelRequest&, const Model::UpdateMLModelOutcome&, const std::shared_ptr<const Aws::Client::AsyncCallerContext>&) > UpdateMLModelResponseReceivedHandler;
/**
* Definition of the public APIs exposed by Amazon Machine Learning
*/
class AWS_MACHINELEARNING_API MachineLearningClient : public Aws::Client::AWSJsonClient
{
public:
typedef Aws::Client::AWSJsonClient BASECLASS;
/**
* Initializes client to use DefaultCredentialProviderChain, with default http client factory, and optional client config. If client config
* is not specified, it will be initialized to default values.
*/
MachineLearningClient(const Aws::Client::ClientConfiguration& clientConfiguration = Aws::Client::ClientConfiguration());
/**
* Initializes client to use SimpleAWSCredentialsProvider, with default http client factory, and optional client config. If client config
* is not specified, it will be initialized to default values.
*/
MachineLearningClient(const Aws::Auth::AWSCredentials& credentials, const Aws::Client::ClientConfiguration& clientConfiguration = Aws::Client::ClientConfiguration());
/**
* Initializes client to use specified credentials provider with specified client config. If http client factory is not supplied,
* the default http client factory will be used
*/
MachineLearningClient(const std::shared_ptr<Aws::Auth::AWSCredentialsProvider>& credentialsProvider,
const Aws::Client::ClientConfiguration& clientConfiguration = Aws::Client::ClientConfiguration());
virtual ~MachineLearningClient();
/**
* <p>Adds one or more tags to an object, up to a limit of 10. Each tag consists of
* a key and an optional value. If you add a tag using a key that is already
* associated with the ML object, <code>AddTags</code> updates the tag's
* value.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/AddTags">AWS
* API Reference</a></p>
*/
virtual Model::AddTagsOutcome AddTags(const Model::AddTagsRequest& request) const;
/**
* <p>Adds one or more tags to an object, up to a limit of 10. Each tag consists of
* a key and an optional value. If you add a tag using a key that is already
* associated with the ML object, <code>AddTags</code> updates the tag's
* value.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/AddTags">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::AddTagsOutcomeCallable AddTagsCallable(const Model::AddTagsRequest& request) const;
/**
* <p>Adds one or more tags to an object, up to a limit of 10. Each tag consists of
* a key and an optional value. If you add a tag using a key that is already
* associated with the ML object, <code>AddTags</code> updates the tag's
* value.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/AddTags">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void AddTagsAsync(const Model::AddTagsRequest& request, const AddTagsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Generates predictions for a group of observations. The observations to
* process exist in one or more data files referenced by a <code>DataSource</code>.
* This operation creates a new <code>BatchPrediction</code>, and uses an
* <code>MLModel</code> and the data files referenced by the
* <code>DataSource</code> as information sources. </p>
* <p><code>CreateBatchPrediction</code> is an asynchronous operation. In response
* to <code>CreateBatchPrediction</code>, Amazon Machine Learning (Amazon ML)
* immediately returns and sets the <code>BatchPrediction</code> status to
* <code>PENDING</code>. After the <code>BatchPrediction</code> completes, Amazon
* ML sets the status to <code>COMPLETED</code>. </p> <p>You can poll for status
* updates by using the <a>GetBatchPrediction</a> operation and checking the
* <code>Status</code> parameter of the result. After the <code>COMPLETED</code>
* status appears, the results are available in the location specified by the
* <code>OutputUri</code> parameter.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateBatchPrediction">AWS
* API Reference</a></p>
*/
virtual Model::CreateBatchPredictionOutcome CreateBatchPrediction(const Model::CreateBatchPredictionRequest& request) const;
/**
* <p>Generates predictions for a group of observations. The observations to
* process exist in one or more data files referenced by a <code>DataSource</code>.
* This operation creates a new <code>BatchPrediction</code>, and uses an
* <code>MLModel</code> and the data files referenced by the
* <code>DataSource</code> as information sources. </p>
* <p><code>CreateBatchPrediction</code> is an asynchronous operation. In response
* to <code>CreateBatchPrediction</code>, Amazon Machine Learning (Amazon ML)
* immediately returns and sets the <code>BatchPrediction</code> status to
* <code>PENDING</code>. After the <code>BatchPrediction</code> completes, Amazon
* ML sets the status to <code>COMPLETED</code>. </p> <p>You can poll for status
* updates by using the <a>GetBatchPrediction</a> operation and checking the
* <code>Status</code> parameter of the result. After the <code>COMPLETED</code>
* status appears, the results are available in the location specified by the
* <code>OutputUri</code> parameter.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateBatchPrediction">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::CreateBatchPredictionOutcomeCallable CreateBatchPredictionCallable(const Model::CreateBatchPredictionRequest& request) const;
/**
* <p>Generates predictions for a group of observations. The observations to
* process exist in one or more data files referenced by a <code>DataSource</code>.
* This operation creates a new <code>BatchPrediction</code>, and uses an
* <code>MLModel</code> and the data files referenced by the
* <code>DataSource</code> as information sources. </p>
* <p><code>CreateBatchPrediction</code> is an asynchronous operation. In response
* to <code>CreateBatchPrediction</code>, Amazon Machine Learning (Amazon ML)
* immediately returns and sets the <code>BatchPrediction</code> status to
* <code>PENDING</code>. After the <code>BatchPrediction</code> completes, Amazon
* ML sets the status to <code>COMPLETED</code>. </p> <p>You can poll for status
* updates by using the <a>GetBatchPrediction</a> operation and checking the
* <code>Status</code> parameter of the result. After the <code>COMPLETED</code>
* status appears, the results are available in the location specified by the
* <code>OutputUri</code> parameter.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateBatchPrediction">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void CreateBatchPredictionAsync(const Model::CreateBatchPredictionRequest& request, const CreateBatchPredictionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Creates a <code>DataSource</code> object from an <a
* href="http://aws.amazon.com/rds/"> Amazon Relational Database Service</a>
* (Amazon RDS). A <code>DataSource</code> references data that can be used to
* perform <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or
* <code>CreateBatchPrediction</code> operations.</p>
* <p><code>CreateDataSourceFromRDS</code> is an asynchronous operation. In
* response to <code>CreateDataSourceFromRDS</code>, Amazon Machine Learning
* (Amazon ML) immediately returns and sets the <code>DataSource</code> status to
* <code>PENDING</code>. After the <code>DataSource</code> is created and ready for
* use, Amazon ML sets the <code>Status</code> parameter to <code>COMPLETED</code>.
* <code>DataSource</code> in the <code>COMPLETED</code> or <code>PENDING</code>
* state can be used only to perform <code>&gt;CreateMLModel</code>&gt;,
* <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations.
* </p> <p> If Amazon ML cannot accept the input source, it sets the
* <code>Status</code> parameter to <code>FAILED</code> and includes an error
* message in the <code>Message</code> attribute of the <code>GetDataSource</code>
* operation response. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateDataSourceFromRDS">AWS
* API Reference</a></p>
*/
virtual Model::CreateDataSourceFromRDSOutcome CreateDataSourceFromRDS(const Model::CreateDataSourceFromRDSRequest& request) const;
/**
* <p>Creates a <code>DataSource</code> object from an <a
* href="http://aws.amazon.com/rds/"> Amazon Relational Database Service</a>
* (Amazon RDS). A <code>DataSource</code> references data that can be used to
* perform <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or
* <code>CreateBatchPrediction</code> operations.</p>
* <p><code>CreateDataSourceFromRDS</code> is an asynchronous operation. In
* response to <code>CreateDataSourceFromRDS</code>, Amazon Machine Learning
* (Amazon ML) immediately returns and sets the <code>DataSource</code> status to
* <code>PENDING</code>. After the <code>DataSource</code> is created and ready for
* use, Amazon ML sets the <code>Status</code> parameter to <code>COMPLETED</code>.
* <code>DataSource</code> in the <code>COMPLETED</code> or <code>PENDING</code>
* state can be used only to perform <code>&gt;CreateMLModel</code>&gt;,
* <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations.
* </p> <p> If Amazon ML cannot accept the input source, it sets the
* <code>Status</code> parameter to <code>FAILED</code> and includes an error
* message in the <code>Message</code> attribute of the <code>GetDataSource</code>
* operation response. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateDataSourceFromRDS">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::CreateDataSourceFromRDSOutcomeCallable CreateDataSourceFromRDSCallable(const Model::CreateDataSourceFromRDSRequest& request) const;
/**
* <p>Creates a <code>DataSource</code> object from an <a
* href="http://aws.amazon.com/rds/"> Amazon Relational Database Service</a>
* (Amazon RDS). A <code>DataSource</code> references data that can be used to
* perform <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or
* <code>CreateBatchPrediction</code> operations.</p>
* <p><code>CreateDataSourceFromRDS</code> is an asynchronous operation. In
* response to <code>CreateDataSourceFromRDS</code>, Amazon Machine Learning
* (Amazon ML) immediately returns and sets the <code>DataSource</code> status to
* <code>PENDING</code>. After the <code>DataSource</code> is created and ready for
* use, Amazon ML sets the <code>Status</code> parameter to <code>COMPLETED</code>.
* <code>DataSource</code> in the <code>COMPLETED</code> or <code>PENDING</code>
* state can be used only to perform <code>&gt;CreateMLModel</code>&gt;,
* <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations.
* </p> <p> If Amazon ML cannot accept the input source, it sets the
* <code>Status</code> parameter to <code>FAILED</code> and includes an error
* message in the <code>Message</code> attribute of the <code>GetDataSource</code>
* operation response. </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateDataSourceFromRDS">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void CreateDataSourceFromRDSAsync(const Model::CreateDataSourceFromRDSRequest& request, const CreateDataSourceFromRDSResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Creates a <code>DataSource</code> from a database hosted on an Amazon
* Redshift cluster. A <code>DataSource</code> references data that can be used to
* perform either <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or
* <code>CreateBatchPrediction</code> operations.</p>
* <p><code>CreateDataSourceFromRedshift</code> is an asynchronous operation. In
* response to <code>CreateDataSourceFromRedshift</code>, Amazon Machine Learning
* (Amazon ML) immediately returns and sets the <code>DataSource</code> status to
* <code>PENDING</code>. After the <code>DataSource</code> is created and ready for
* use, Amazon ML sets the <code>Status</code> parameter to <code>COMPLETED</code>.
* <code>DataSource</code> in <code>COMPLETED</code> or <code>PENDING</code> states
* can be used to perform only <code>CreateMLModel</code>,
* <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations.
* </p> <p> If Amazon ML can't accept the input source, it sets the
* <code>Status</code> parameter to <code>FAILED</code> and includes an error
* message in the <code>Message</code> attribute of the <code>GetDataSource</code>
* operation response. </p> <p>The observations should be contained in the database
* hosted on an Amazon Redshift cluster and should be specified by a
* <code>SelectSqlQuery</code> query. Amazon ML executes an <code>Unload</code>
* command in Amazon Redshift to transfer the result set of the
* <code>SelectSqlQuery</code> query to <code>S3StagingLocation</code>.</p>
* <p>After the <code>DataSource</code> has been created, it's ready for use in
* evaluations and batch predictions. If you plan to use the
* <code>DataSource</code> to train an <code>MLModel</code>, the
* <code>DataSource</code> also requires a recipe. A recipe describes how each
* input variable will be used in training an <code>MLModel</code>. Will the
* variable be included or excluded from training? Will the variable be
* manipulated; for example, will it be combined with another variable or will it
* be split apart into word combinations? The recipe provides answers to these
* questions.</p> <?oxy_insert_start author="laurama"
* timestamp="20160406T153842-0700"><p>You can't change an existing datasource, but
* you can copy and modify the settings from an existing Amazon Redshift datasource
* to create a new datasource. To do so, call <code>GetDataSource</code> for an
* existing datasource and copy the values to a <code>CreateDataSource</code> call.
* Change the settings that you want to change and make sure that all required
* fields have the appropriate values.</p> <?oxy_insert_end><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateDataSourceFromRedshift">AWS
* API Reference</a></p>
*/
virtual Model::CreateDataSourceFromRedshiftOutcome CreateDataSourceFromRedshift(const Model::CreateDataSourceFromRedshiftRequest& request) const;
/**
* <p>Creates a <code>DataSource</code> from a database hosted on an Amazon
* Redshift cluster. A <code>DataSource</code> references data that can be used to
* perform either <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or
* <code>CreateBatchPrediction</code> operations.</p>
* <p><code>CreateDataSourceFromRedshift</code> is an asynchronous operation. In
* response to <code>CreateDataSourceFromRedshift</code>, Amazon Machine Learning
* (Amazon ML) immediately returns and sets the <code>DataSource</code> status to
* <code>PENDING</code>. After the <code>DataSource</code> is created and ready for
* use, Amazon ML sets the <code>Status</code> parameter to <code>COMPLETED</code>.
* <code>DataSource</code> in <code>COMPLETED</code> or <code>PENDING</code> states
* can be used to perform only <code>CreateMLModel</code>,
* <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations.
* </p> <p> If Amazon ML can't accept the input source, it sets the
* <code>Status</code> parameter to <code>FAILED</code> and includes an error
* message in the <code>Message</code> attribute of the <code>GetDataSource</code>
* operation response. </p> <p>The observations should be contained in the database
* hosted on an Amazon Redshift cluster and should be specified by a
* <code>SelectSqlQuery</code> query. Amazon ML executes an <code>Unload</code>
* command in Amazon Redshift to transfer the result set of the
* <code>SelectSqlQuery</code> query to <code>S3StagingLocation</code>.</p>
* <p>After the <code>DataSource</code> has been created, it's ready for use in
* evaluations and batch predictions. If you plan to use the
* <code>DataSource</code> to train an <code>MLModel</code>, the
* <code>DataSource</code> also requires a recipe. A recipe describes how each
* input variable will be used in training an <code>MLModel</code>. Will the
* variable be included or excluded from training? Will the variable be
* manipulated; for example, will it be combined with another variable or will it
* be split apart into word combinations? The recipe provides answers to these
* questions.</p> <?oxy_insert_start author="laurama"
* timestamp="20160406T153842-0700"><p>You can't change an existing datasource, but
* you can copy and modify the settings from an existing Amazon Redshift datasource
* to create a new datasource. To do so, call <code>GetDataSource</code> for an
* existing datasource and copy the values to a <code>CreateDataSource</code> call.
* Change the settings that you want to change and make sure that all required
* fields have the appropriate values.</p> <?oxy_insert_end><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateDataSourceFromRedshift">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::CreateDataSourceFromRedshiftOutcomeCallable CreateDataSourceFromRedshiftCallable(const Model::CreateDataSourceFromRedshiftRequest& request) const;
/**
* <p>Creates a <code>DataSource</code> from a database hosted on an Amazon
* Redshift cluster. A <code>DataSource</code> references data that can be used to
* perform either <code>CreateMLModel</code>, <code>CreateEvaluation</code>, or
* <code>CreateBatchPrediction</code> operations.</p>
* <p><code>CreateDataSourceFromRedshift</code> is an asynchronous operation. In
* response to <code>CreateDataSourceFromRedshift</code>, Amazon Machine Learning
* (Amazon ML) immediately returns and sets the <code>DataSource</code> status to
* <code>PENDING</code>. After the <code>DataSource</code> is created and ready for
* use, Amazon ML sets the <code>Status</code> parameter to <code>COMPLETED</code>.
* <code>DataSource</code> in <code>COMPLETED</code> or <code>PENDING</code> states
* can be used to perform only <code>CreateMLModel</code>,
* <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code> operations.
* </p> <p> If Amazon ML can't accept the input source, it sets the
* <code>Status</code> parameter to <code>FAILED</code> and includes an error
* message in the <code>Message</code> attribute of the <code>GetDataSource</code>
* operation response. </p> <p>The observations should be contained in the database
* hosted on an Amazon Redshift cluster and should be specified by a
* <code>SelectSqlQuery</code> query. Amazon ML executes an <code>Unload</code>
* command in Amazon Redshift to transfer the result set of the
* <code>SelectSqlQuery</code> query to <code>S3StagingLocation</code>.</p>
* <p>After the <code>DataSource</code> has been created, it's ready for use in
* evaluations and batch predictions. If you plan to use the
* <code>DataSource</code> to train an <code>MLModel</code>, the
* <code>DataSource</code> also requires a recipe. A recipe describes how each
* input variable will be used in training an <code>MLModel</code>. Will the
* variable be included or excluded from training? Will the variable be
* manipulated; for example, will it be combined with another variable or will it
* be split apart into word combinations? The recipe provides answers to these
* questions.</p> <?oxy_insert_start author="laurama"
* timestamp="20160406T153842-0700"><p>You can't change an existing datasource, but
* you can copy and modify the settings from an existing Amazon Redshift datasource
* to create a new datasource. To do so, call <code>GetDataSource</code> for an
* existing datasource and copy the values to a <code>CreateDataSource</code> call.
* Change the settings that you want to change and make sure that all required
* fields have the appropriate values.</p> <?oxy_insert_end><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateDataSourceFromRedshift">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void CreateDataSourceFromRedshiftAsync(const Model::CreateDataSourceFromRedshiftRequest& request, const CreateDataSourceFromRedshiftResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Creates a <code>DataSource</code> object. A <code>DataSource</code>
* references data that can be used to perform <code>CreateMLModel</code>,
* <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code>
* operations.</p> <p><code>CreateDataSourceFromS3</code> is an asynchronous
* operation. In response to <code>CreateDataSourceFromS3</code>, Amazon Machine
* Learning (Amazon ML) immediately returns and sets the <code>DataSource</code>
* status to <code>PENDING</code>. After the <code>DataSource</code> has been
* created and is ready for use, Amazon ML sets the <code>Status</code> parameter
* to <code>COMPLETED</code>. <code>DataSource</code> in the <code>COMPLETED</code>
* or <code>PENDING</code> state can be used to perform only
* <code>CreateMLModel</code>, <code>CreateEvaluation</code> or
* <code>CreateBatchPrediction</code> operations. </p> <p> If Amazon ML can't
* accept the input source, it sets the <code>Status</code> parameter to
* <code>FAILED</code> and includes an error message in the <code>Message</code>
* attribute of the <code>GetDataSource</code> operation response. </p> <p>The
* observation data used in a <code>DataSource</code> should be ready to use; that
* is, it should have a consistent structure, and missing data values should be
* kept to a minimum. The observation data must reside in one or more .csv files in
* an Amazon Simple Storage Service (Amazon S3) location, along with a schema that
* describes the data items by name and type. The same schema must be used for all
* of the data files referenced by the <code>DataSource</code>. </p> <p>After the
* <code>DataSource</code> has been created, it's ready to use in evaluations and
* batch predictions. If you plan to use the <code>DataSource</code> to train an
* <code>MLModel</code>, the <code>DataSource</code> also needs a recipe. A recipe
* describes how each input variable will be used in training an
* <code>MLModel</code>. Will the variable be included or excluded from training?
* Will the variable be manipulated; for example, will it be combined with another
* variable or will it be split apart into word combinations? The recipe provides
* answers to these questions.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateDataSourceFromS3">AWS
* API Reference</a></p>
*/
virtual Model::CreateDataSourceFromS3Outcome CreateDataSourceFromS3(const Model::CreateDataSourceFromS3Request& request) const;
/**
* <p>Creates a <code>DataSource</code> object. A <code>DataSource</code>
* references data that can be used to perform <code>CreateMLModel</code>,
* <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code>
* operations.</p> <p><code>CreateDataSourceFromS3</code> is an asynchronous
* operation. In response to <code>CreateDataSourceFromS3</code>, Amazon Machine
* Learning (Amazon ML) immediately returns and sets the <code>DataSource</code>
* status to <code>PENDING</code>. After the <code>DataSource</code> has been
* created and is ready for use, Amazon ML sets the <code>Status</code> parameter
* to <code>COMPLETED</code>. <code>DataSource</code> in the <code>COMPLETED</code>
* or <code>PENDING</code> state can be used to perform only
* <code>CreateMLModel</code>, <code>CreateEvaluation</code> or
* <code>CreateBatchPrediction</code> operations. </p> <p> If Amazon ML can't
* accept the input source, it sets the <code>Status</code> parameter to
* <code>FAILED</code> and includes an error message in the <code>Message</code>
* attribute of the <code>GetDataSource</code> operation response. </p> <p>The
* observation data used in a <code>DataSource</code> should be ready to use; that
* is, it should have a consistent structure, and missing data values should be
* kept to a minimum. The observation data must reside in one or more .csv files in
* an Amazon Simple Storage Service (Amazon S3) location, along with a schema that
* describes the data items by name and type. The same schema must be used for all
* of the data files referenced by the <code>DataSource</code>. </p> <p>After the
* <code>DataSource</code> has been created, it's ready to use in evaluations and
* batch predictions. If you plan to use the <code>DataSource</code> to train an
* <code>MLModel</code>, the <code>DataSource</code> also needs a recipe. A recipe
* describes how each input variable will be used in training an
* <code>MLModel</code>. Will the variable be included or excluded from training?
* Will the variable be manipulated; for example, will it be combined with another
* variable or will it be split apart into word combinations? The recipe provides
* answers to these questions.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateDataSourceFromS3">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::CreateDataSourceFromS3OutcomeCallable CreateDataSourceFromS3Callable(const Model::CreateDataSourceFromS3Request& request) const;
/**
* <p>Creates a <code>DataSource</code> object. A <code>DataSource</code>
* references data that can be used to perform <code>CreateMLModel</code>,
* <code>CreateEvaluation</code>, or <code>CreateBatchPrediction</code>
* operations.</p> <p><code>CreateDataSourceFromS3</code> is an asynchronous
* operation. In response to <code>CreateDataSourceFromS3</code>, Amazon Machine
* Learning (Amazon ML) immediately returns and sets the <code>DataSource</code>
* status to <code>PENDING</code>. After the <code>DataSource</code> has been
* created and is ready for use, Amazon ML sets the <code>Status</code> parameter
* to <code>COMPLETED</code>. <code>DataSource</code> in the <code>COMPLETED</code>
* or <code>PENDING</code> state can be used to perform only
* <code>CreateMLModel</code>, <code>CreateEvaluation</code> or
* <code>CreateBatchPrediction</code> operations. </p> <p> If Amazon ML can't
* accept the input source, it sets the <code>Status</code> parameter to
* <code>FAILED</code> and includes an error message in the <code>Message</code>
* attribute of the <code>GetDataSource</code> operation response. </p> <p>The
* observation data used in a <code>DataSource</code> should be ready to use; that
* is, it should have a consistent structure, and missing data values should be
* kept to a minimum. The observation data must reside in one or more .csv files in
* an Amazon Simple Storage Service (Amazon S3) location, along with a schema that
* describes the data items by name and type. The same schema must be used for all
* of the data files referenced by the <code>DataSource</code>. </p> <p>After the
* <code>DataSource</code> has been created, it's ready to use in evaluations and
* batch predictions. If you plan to use the <code>DataSource</code> to train an
* <code>MLModel</code>, the <code>DataSource</code> also needs a recipe. A recipe
* describes how each input variable will be used in training an
* <code>MLModel</code>. Will the variable be included or excluded from training?
* Will the variable be manipulated; for example, will it be combined with another
* variable or will it be split apart into word combinations? The recipe provides
* answers to these questions.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateDataSourceFromS3">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void CreateDataSourceFromS3Async(const Model::CreateDataSourceFromS3Request& request, const CreateDataSourceFromS3ResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Creates a new <code>Evaluation</code> of an <code>MLModel</code>. An
* <code>MLModel</code> is evaluated on a set of observations associated to a
* <code>DataSource</code>. Like a <code>DataSource</code> for an
* <code>MLModel</code>, the <code>DataSource</code> for an <code>Evaluation</code>
* contains values for the <code>Target Variable</code>. The
* <code>Evaluation</code> compares the predicted result for each observation to
* the actual outcome and provides a summary so that you know how effective the
* <code>MLModel</code> functions on the test data. Evaluation generates a relevant
* performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore
* based on the corresponding <code>MLModelType</code>: <code>BINARY</code>,
* <code>REGRESSION</code> or <code>MULTICLASS</code>. </p>
* <p><code>CreateEvaluation</code> is an asynchronous operation. In response to
* <code>CreateEvaluation</code>, Amazon Machine Learning (Amazon ML) immediately
* returns and sets the evaluation status to <code>PENDING</code>. After the
* <code>Evaluation</code> is created and ready for use, Amazon ML sets the status
* to <code>COMPLETED</code>. </p> <p>You can use the <code>GetEvaluation</code>
* operation to check progress of the evaluation during the creation
* operation.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateEvaluation">AWS
* API Reference</a></p>
*/
virtual Model::CreateEvaluationOutcome CreateEvaluation(const Model::CreateEvaluationRequest& request) const;
/**
* <p>Creates a new <code>Evaluation</code> of an <code>MLModel</code>. An
* <code>MLModel</code> is evaluated on a set of observations associated to a
* <code>DataSource</code>. Like a <code>DataSource</code> for an
* <code>MLModel</code>, the <code>DataSource</code> for an <code>Evaluation</code>
* contains values for the <code>Target Variable</code>. The
* <code>Evaluation</code> compares the predicted result for each observation to
* the actual outcome and provides a summary so that you know how effective the
* <code>MLModel</code> functions on the test data. Evaluation generates a relevant
* performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore
* based on the corresponding <code>MLModelType</code>: <code>BINARY</code>,
* <code>REGRESSION</code> or <code>MULTICLASS</code>. </p>
* <p><code>CreateEvaluation</code> is an asynchronous operation. In response to
* <code>CreateEvaluation</code>, Amazon Machine Learning (Amazon ML) immediately
* returns and sets the evaluation status to <code>PENDING</code>. After the
* <code>Evaluation</code> is created and ready for use, Amazon ML sets the status
* to <code>COMPLETED</code>. </p> <p>You can use the <code>GetEvaluation</code>
* operation to check progress of the evaluation during the creation
* operation.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateEvaluation">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::CreateEvaluationOutcomeCallable CreateEvaluationCallable(const Model::CreateEvaluationRequest& request) const;
/**
* <p>Creates a new <code>Evaluation</code> of an <code>MLModel</code>. An
* <code>MLModel</code> is evaluated on a set of observations associated to a
* <code>DataSource</code>. Like a <code>DataSource</code> for an
* <code>MLModel</code>, the <code>DataSource</code> for an <code>Evaluation</code>
* contains values for the <code>Target Variable</code>. The
* <code>Evaluation</code> compares the predicted result for each observation to
* the actual outcome and provides a summary so that you know how effective the
* <code>MLModel</code> functions on the test data. Evaluation generates a relevant
* performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore
* based on the corresponding <code>MLModelType</code>: <code>BINARY</code>,
* <code>REGRESSION</code> or <code>MULTICLASS</code>. </p>
* <p><code>CreateEvaluation</code> is an asynchronous operation. In response to
* <code>CreateEvaluation</code>, Amazon Machine Learning (Amazon ML) immediately
* returns and sets the evaluation status to <code>PENDING</code>. After the
* <code>Evaluation</code> is created and ready for use, Amazon ML sets the status
* to <code>COMPLETED</code>. </p> <p>You can use the <code>GetEvaluation</code>
* operation to check progress of the evaluation during the creation
* operation.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateEvaluation">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void CreateEvaluationAsync(const Model::CreateEvaluationRequest& request, const CreateEvaluationResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Creates a new <code>MLModel</code> using the <code>DataSource</code> and the
* recipe as information sources. </p> <p>An <code>MLModel</code> is nearly
* immutable. Users can update only the <code>MLModelName</code> and the
* <code>ScoreThreshold</code> in an <code>MLModel</code> without creating a new
* <code>MLModel</code>. </p> <p><code>CreateMLModel</code> is an asynchronous
* operation. In response to <code>CreateMLModel</code>, Amazon Machine Learning
* (Amazon ML) immediately returns and sets the <code>MLModel</code> status to
* <code>PENDING</code>. After the <code>MLModel</code> has been created and ready
* is for use, Amazon ML sets the status to <code>COMPLETED</code>. </p> <p>You can
* use the <code>GetMLModel</code> operation to check the progress of the
* <code>MLModel</code> during the creation operation.</p> <p>
* <code>CreateMLModel</code> requires a <code>DataSource</code> with computed
* statistics, which can be created by setting <code>ComputeStatistics</code> to
* <code>true</code> in <code>CreateDataSourceFromRDS</code>,
* <code>CreateDataSourceFromS3</code>, or
* <code>CreateDataSourceFromRedshift</code> operations. </p><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateMLModel">AWS
* API Reference</a></p>
*/
virtual Model::CreateMLModelOutcome CreateMLModel(const Model::CreateMLModelRequest& request) const;
/**
* <p>Creates a new <code>MLModel</code> using the <code>DataSource</code> and the
* recipe as information sources. </p> <p>An <code>MLModel</code> is nearly
* immutable. Users can update only the <code>MLModelName</code> and the
* <code>ScoreThreshold</code> in an <code>MLModel</code> without creating a new
* <code>MLModel</code>. </p> <p><code>CreateMLModel</code> is an asynchronous
* operation. In response to <code>CreateMLModel</code>, Amazon Machine Learning
* (Amazon ML) immediately returns and sets the <code>MLModel</code> status to
* <code>PENDING</code>. After the <code>MLModel</code> has been created and ready
* is for use, Amazon ML sets the status to <code>COMPLETED</code>. </p> <p>You can
* use the <code>GetMLModel</code> operation to check the progress of the
* <code>MLModel</code> during the creation operation.</p> <p>
* <code>CreateMLModel</code> requires a <code>DataSource</code> with computed
* statistics, which can be created by setting <code>ComputeStatistics</code> to
* <code>true</code> in <code>CreateDataSourceFromRDS</code>,
* <code>CreateDataSourceFromS3</code>, or
* <code>CreateDataSourceFromRedshift</code> operations. </p><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateMLModel">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::CreateMLModelOutcomeCallable CreateMLModelCallable(const Model::CreateMLModelRequest& request) const;
/**
* <p>Creates a new <code>MLModel</code> using the <code>DataSource</code> and the
* recipe as information sources. </p> <p>An <code>MLModel</code> is nearly
* immutable. Users can update only the <code>MLModelName</code> and the
* <code>ScoreThreshold</code> in an <code>MLModel</code> without creating a new
* <code>MLModel</code>. </p> <p><code>CreateMLModel</code> is an asynchronous
* operation. In response to <code>CreateMLModel</code>, Amazon Machine Learning
* (Amazon ML) immediately returns and sets the <code>MLModel</code> status to
* <code>PENDING</code>. After the <code>MLModel</code> has been created and ready
* is for use, Amazon ML sets the status to <code>COMPLETED</code>. </p> <p>You can
* use the <code>GetMLModel</code> operation to check the progress of the
* <code>MLModel</code> during the creation operation.</p> <p>
* <code>CreateMLModel</code> requires a <code>DataSource</code> with computed
* statistics, which can be created by setting <code>ComputeStatistics</code> to
* <code>true</code> in <code>CreateDataSourceFromRDS</code>,
* <code>CreateDataSourceFromS3</code>, or
* <code>CreateDataSourceFromRedshift</code> operations. </p><p><h3>See Also:</h3>
* <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateMLModel">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void CreateMLModelAsync(const Model::CreateMLModelRequest& request, const CreateMLModelResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Creates a real-time endpoint for the <code>MLModel</code>. The endpoint
* contains the URI of the <code>MLModel</code>; that is, the location to send
* real-time prediction requests for the specified
* <code>MLModel</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateRealtimeEndpoint">AWS
* API Reference</a></p>
*/
virtual Model::CreateRealtimeEndpointOutcome CreateRealtimeEndpoint(const Model::CreateRealtimeEndpointRequest& request) const;
/**
* <p>Creates a real-time endpoint for the <code>MLModel</code>. The endpoint
* contains the URI of the <code>MLModel</code>; that is, the location to send
* real-time prediction requests for the specified
* <code>MLModel</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateRealtimeEndpoint">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::CreateRealtimeEndpointOutcomeCallable CreateRealtimeEndpointCallable(const Model::CreateRealtimeEndpointRequest& request) const;
/**
* <p>Creates a real-time endpoint for the <code>MLModel</code>. The endpoint
* contains the URI of the <code>MLModel</code>; that is, the location to send
* real-time prediction requests for the specified
* <code>MLModel</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/CreateRealtimeEndpoint">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void CreateRealtimeEndpointAsync(const Model::CreateRealtimeEndpointRequest& request, const CreateRealtimeEndpointResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Assigns the DELETED status to a <code>BatchPrediction</code>, rendering it
* unusable.</p> <p>After using the <code>DeleteBatchPrediction</code> operation,
* you can use the <a>GetBatchPrediction</a> operation to verify that the status of
* the <code>BatchPrediction</code> changed to DELETED.</p> <p><b>Caution:</b> The
* result of the <code>DeleteBatchPrediction</code> operation is
* irreversible.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteBatchPrediction">AWS
* API Reference</a></p>
*/
virtual Model::DeleteBatchPredictionOutcome DeleteBatchPrediction(const Model::DeleteBatchPredictionRequest& request) const;
/**
* <p>Assigns the DELETED status to a <code>BatchPrediction</code>, rendering it
* unusable.</p> <p>After using the <code>DeleteBatchPrediction</code> operation,
* you can use the <a>GetBatchPrediction</a> operation to verify that the status of
* the <code>BatchPrediction</code> changed to DELETED.</p> <p><b>Caution:</b> The
* result of the <code>DeleteBatchPrediction</code> operation is
* irreversible.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteBatchPrediction">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DeleteBatchPredictionOutcomeCallable DeleteBatchPredictionCallable(const Model::DeleteBatchPredictionRequest& request) const;
/**
* <p>Assigns the DELETED status to a <code>BatchPrediction</code>, rendering it
* unusable.</p> <p>After using the <code>DeleteBatchPrediction</code> operation,
* you can use the <a>GetBatchPrediction</a> operation to verify that the status of
* the <code>BatchPrediction</code> changed to DELETED.</p> <p><b>Caution:</b> The
* result of the <code>DeleteBatchPrediction</code> operation is
* irreversible.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteBatchPrediction">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DeleteBatchPredictionAsync(const Model::DeleteBatchPredictionRequest& request, const DeleteBatchPredictionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Assigns the DELETED status to a <code>DataSource</code>, rendering it
* unusable.</p> <p>After using the <code>DeleteDataSource</code> operation, you
* can use the <a>GetDataSource</a> operation to verify that the status of the
* <code>DataSource</code> changed to DELETED.</p> <p><b>Caution:</b> The results
* of the <code>DeleteDataSource</code> operation are irreversible.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteDataSource">AWS
* API Reference</a></p>
*/
virtual Model::DeleteDataSourceOutcome DeleteDataSource(const Model::DeleteDataSourceRequest& request) const;
/**
* <p>Assigns the DELETED status to a <code>DataSource</code>, rendering it
* unusable.</p> <p>After using the <code>DeleteDataSource</code> operation, you
* can use the <a>GetDataSource</a> operation to verify that the status of the
* <code>DataSource</code> changed to DELETED.</p> <p><b>Caution:</b> The results
* of the <code>DeleteDataSource</code> operation are irreversible.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteDataSource">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DeleteDataSourceOutcomeCallable DeleteDataSourceCallable(const Model::DeleteDataSourceRequest& request) const;
/**
* <p>Assigns the DELETED status to a <code>DataSource</code>, rendering it
* unusable.</p> <p>After using the <code>DeleteDataSource</code> operation, you
* can use the <a>GetDataSource</a> operation to verify that the status of the
* <code>DataSource</code> changed to DELETED.</p> <p><b>Caution:</b> The results
* of the <code>DeleteDataSource</code> operation are irreversible.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteDataSource">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DeleteDataSourceAsync(const Model::DeleteDataSourceRequest& request, const DeleteDataSourceResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Assigns the <code>DELETED</code> status to an <code>Evaluation</code>,
* rendering it unusable.</p> <p>After invoking the <code>DeleteEvaluation</code>
* operation, you can use the <code>GetEvaluation</code> operation to verify that
* the status of the <code>Evaluation</code> changed to <code>DELETED</code>.</p>
* <caution><title>Caution</title> <p>The results of the
* <code>DeleteEvaluation</code> operation are
* irreversible.</p></caution><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteEvaluation">AWS
* API Reference</a></p>
*/
virtual Model::DeleteEvaluationOutcome DeleteEvaluation(const Model::DeleteEvaluationRequest& request) const;
/**
* <p>Assigns the <code>DELETED</code> status to an <code>Evaluation</code>,
* rendering it unusable.</p> <p>After invoking the <code>DeleteEvaluation</code>
* operation, you can use the <code>GetEvaluation</code> operation to verify that
* the status of the <code>Evaluation</code> changed to <code>DELETED</code>.</p>
* <caution><title>Caution</title> <p>The results of the
* <code>DeleteEvaluation</code> operation are
* irreversible.</p></caution><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteEvaluation">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DeleteEvaluationOutcomeCallable DeleteEvaluationCallable(const Model::DeleteEvaluationRequest& request) const;
/**
* <p>Assigns the <code>DELETED</code> status to an <code>Evaluation</code>,
* rendering it unusable.</p> <p>After invoking the <code>DeleteEvaluation</code>
* operation, you can use the <code>GetEvaluation</code> operation to verify that
* the status of the <code>Evaluation</code> changed to <code>DELETED</code>.</p>
* <caution><title>Caution</title> <p>The results of the
* <code>DeleteEvaluation</code> operation are
* irreversible.</p></caution><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteEvaluation">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DeleteEvaluationAsync(const Model::DeleteEvaluationRequest& request, const DeleteEvaluationResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Assigns the <code>DELETED</code> status to an <code>MLModel</code>, rendering
* it unusable.</p> <p>After using the <code>DeleteMLModel</code> operation, you
* can use the <code>GetMLModel</code> operation to verify that the status of the
* <code>MLModel</code> changed to DELETED.</p> <p><b>Caution:</b> The result of
* the <code>DeleteMLModel</code> operation is irreversible.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteMLModel">AWS
* API Reference</a></p>
*/
virtual Model::DeleteMLModelOutcome DeleteMLModel(const Model::DeleteMLModelRequest& request) const;
/**
* <p>Assigns the <code>DELETED</code> status to an <code>MLModel</code>, rendering
* it unusable.</p> <p>After using the <code>DeleteMLModel</code> operation, you
* can use the <code>GetMLModel</code> operation to verify that the status of the
* <code>MLModel</code> changed to DELETED.</p> <p><b>Caution:</b> The result of
* the <code>DeleteMLModel</code> operation is irreversible.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteMLModel">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DeleteMLModelOutcomeCallable DeleteMLModelCallable(const Model::DeleteMLModelRequest& request) const;
/**
* <p>Assigns the <code>DELETED</code> status to an <code>MLModel</code>, rendering
* it unusable.</p> <p>After using the <code>DeleteMLModel</code> operation, you
* can use the <code>GetMLModel</code> operation to verify that the status of the
* <code>MLModel</code> changed to DELETED.</p> <p><b>Caution:</b> The result of
* the <code>DeleteMLModel</code> operation is irreversible.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteMLModel">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DeleteMLModelAsync(const Model::DeleteMLModelRequest& request, const DeleteMLModelResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Deletes a real time endpoint of an <code>MLModel</code>.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteRealtimeEndpoint">AWS
* API Reference</a></p>
*/
virtual Model::DeleteRealtimeEndpointOutcome DeleteRealtimeEndpoint(const Model::DeleteRealtimeEndpointRequest& request) const;
/**
* <p>Deletes a real time endpoint of an <code>MLModel</code>.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteRealtimeEndpoint">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DeleteRealtimeEndpointOutcomeCallable DeleteRealtimeEndpointCallable(const Model::DeleteRealtimeEndpointRequest& request) const;
/**
* <p>Deletes a real time endpoint of an <code>MLModel</code>.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteRealtimeEndpoint">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DeleteRealtimeEndpointAsync(const Model::DeleteRealtimeEndpointRequest& request, const DeleteRealtimeEndpointResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Deletes the specified tags associated with an ML object. After this operation
* is complete, you can't recover deleted tags.</p> <p>If you specify a tag that
* doesn't exist, Amazon ML ignores it.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteTags">AWS
* API Reference</a></p>
*/
virtual Model::DeleteTagsOutcome DeleteTags(const Model::DeleteTagsRequest& request) const;
/**
* <p>Deletes the specified tags associated with an ML object. After this operation
* is complete, you can't recover deleted tags.</p> <p>If you specify a tag that
* doesn't exist, Amazon ML ignores it.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteTags">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DeleteTagsOutcomeCallable DeleteTagsCallable(const Model::DeleteTagsRequest& request) const;
/**
* <p>Deletes the specified tags associated with an ML object. After this operation
* is complete, you can't recover deleted tags.</p> <p>If you specify a tag that
* doesn't exist, Amazon ML ignores it.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DeleteTags">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DeleteTagsAsync(const Model::DeleteTagsRequest& request, const DeleteTagsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Returns a list of <code>BatchPrediction</code> operations that match the
* search criteria in the request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeBatchPredictions">AWS
* API Reference</a></p>
*/
virtual Model::DescribeBatchPredictionsOutcome DescribeBatchPredictions(const Model::DescribeBatchPredictionsRequest& request) const;
/**
* <p>Returns a list of <code>BatchPrediction</code> operations that match the
* search criteria in the request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeBatchPredictions">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DescribeBatchPredictionsOutcomeCallable DescribeBatchPredictionsCallable(const Model::DescribeBatchPredictionsRequest& request) const;
/**
* <p>Returns a list of <code>BatchPrediction</code> operations that match the
* search criteria in the request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeBatchPredictions">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DescribeBatchPredictionsAsync(const Model::DescribeBatchPredictionsRequest& request, const DescribeBatchPredictionsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Returns a list of <code>DataSource</code> that match the search criteria in
* the request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeDataSources">AWS
* API Reference</a></p>
*/
virtual Model::DescribeDataSourcesOutcome DescribeDataSources(const Model::DescribeDataSourcesRequest& request) const;
/**
* <p>Returns a list of <code>DataSource</code> that match the search criteria in
* the request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeDataSources">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DescribeDataSourcesOutcomeCallable DescribeDataSourcesCallable(const Model::DescribeDataSourcesRequest& request) const;
/**
* <p>Returns a list of <code>DataSource</code> that match the search criteria in
* the request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeDataSources">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DescribeDataSourcesAsync(const Model::DescribeDataSourcesRequest& request, const DescribeDataSourcesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Returns a list of <code>DescribeEvaluations</code> that match the search
* criteria in the request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeEvaluations">AWS
* API Reference</a></p>
*/
virtual Model::DescribeEvaluationsOutcome DescribeEvaluations(const Model::DescribeEvaluationsRequest& request) const;
/**
* <p>Returns a list of <code>DescribeEvaluations</code> that match the search
* criteria in the request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeEvaluations">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DescribeEvaluationsOutcomeCallable DescribeEvaluationsCallable(const Model::DescribeEvaluationsRequest& request) const;
/**
* <p>Returns a list of <code>DescribeEvaluations</code> that match the search
* criteria in the request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeEvaluations">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DescribeEvaluationsAsync(const Model::DescribeEvaluationsRequest& request, const DescribeEvaluationsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Returns a list of <code>MLModel</code> that match the search criteria in the
* request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeMLModels">AWS
* API Reference</a></p>
*/
virtual Model::DescribeMLModelsOutcome DescribeMLModels(const Model::DescribeMLModelsRequest& request) const;
/**
* <p>Returns a list of <code>MLModel</code> that match the search criteria in the
* request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeMLModels">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DescribeMLModelsOutcomeCallable DescribeMLModelsCallable(const Model::DescribeMLModelsRequest& request) const;
/**
* <p>Returns a list of <code>MLModel</code> that match the search criteria in the
* request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeMLModels">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DescribeMLModelsAsync(const Model::DescribeMLModelsRequest& request, const DescribeMLModelsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Describes one or more of the tags for your Amazon ML object.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeTags">AWS
* API Reference</a></p>
*/
virtual Model::DescribeTagsOutcome DescribeTags(const Model::DescribeTagsRequest& request) const;
/**
* <p>Describes one or more of the tags for your Amazon ML object.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeTags">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::DescribeTagsOutcomeCallable DescribeTagsCallable(const Model::DescribeTagsRequest& request) const;
/**
* <p>Describes one or more of the tags for your Amazon ML object.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/DescribeTags">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void DescribeTagsAsync(const Model::DescribeTagsRequest& request, const DescribeTagsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Returns a <code>BatchPrediction</code> that includes detailed metadata,
* status, and data file information for a <code>Batch Prediction</code>
* request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/GetBatchPrediction">AWS
* API Reference</a></p>
*/
virtual Model::GetBatchPredictionOutcome GetBatchPrediction(const Model::GetBatchPredictionRequest& request) const;
/**
* <p>Returns a <code>BatchPrediction</code> that includes detailed metadata,
* status, and data file information for a <code>Batch Prediction</code>
* request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/GetBatchPrediction">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::GetBatchPredictionOutcomeCallable GetBatchPredictionCallable(const Model::GetBatchPredictionRequest& request) const;
/**
* <p>Returns a <code>BatchPrediction</code> that includes detailed metadata,
* status, and data file information for a <code>Batch Prediction</code>
* request.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/GetBatchPrediction">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void GetBatchPredictionAsync(const Model::GetBatchPredictionRequest& request, const GetBatchPredictionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Returns a <code>DataSource</code> that includes metadata and data file
* information, as well as the current status of the <code>DataSource</code>.</p>
* <p><code>GetDataSource</code> provides results in normal or verbose format. The
* verbose format adds the schema description and the list of files pointed to by
* the DataSource to the normal format.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/GetDataSource">AWS
* API Reference</a></p>
*/
virtual Model::GetDataSourceOutcome GetDataSource(const Model::GetDataSourceRequest& request) const;
/**
* <p>Returns a <code>DataSource</code> that includes metadata and data file
* information, as well as the current status of the <code>DataSource</code>.</p>
* <p><code>GetDataSource</code> provides results in normal or verbose format. The
* verbose format adds the schema description and the list of files pointed to by
* the DataSource to the normal format.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/GetDataSource">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::GetDataSourceOutcomeCallable GetDataSourceCallable(const Model::GetDataSourceRequest& request) const;
/**
* <p>Returns a <code>DataSource</code> that includes metadata and data file
* information, as well as the current status of the <code>DataSource</code>.</p>
* <p><code>GetDataSource</code> provides results in normal or verbose format. The
* verbose format adds the schema description and the list of files pointed to by
* the DataSource to the normal format.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/GetDataSource">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void GetDataSourceAsync(const Model::GetDataSourceRequest& request, const GetDataSourceResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Returns an <code>Evaluation</code> that includes metadata as well as the
* current status of the <code>Evaluation</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/GetEvaluation">AWS
* API Reference</a></p>
*/
virtual Model::GetEvaluationOutcome GetEvaluation(const Model::GetEvaluationRequest& request) const;
/**
* <p>Returns an <code>Evaluation</code> that includes metadata as well as the
* current status of the <code>Evaluation</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/GetEvaluation">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::GetEvaluationOutcomeCallable GetEvaluationCallable(const Model::GetEvaluationRequest& request) const;
/**
* <p>Returns an <code>Evaluation</code> that includes metadata as well as the
* current status of the <code>Evaluation</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/GetEvaluation">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void GetEvaluationAsync(const Model::GetEvaluationRequest& request, const GetEvaluationResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Returns an <code>MLModel</code> that includes detailed metadata, data source
* information, and the current status of the <code>MLModel</code>.</p>
* <p><code>GetMLModel</code> provides results in normal or verbose format.
* </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/GetMLModel">AWS
* API Reference</a></p>
*/
virtual Model::GetMLModelOutcome GetMLModel(const Model::GetMLModelRequest& request) const;
/**
* <p>Returns an <code>MLModel</code> that includes detailed metadata, data source
* information, and the current status of the <code>MLModel</code>.</p>
* <p><code>GetMLModel</code> provides results in normal or verbose format.
* </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/GetMLModel">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::GetMLModelOutcomeCallable GetMLModelCallable(const Model::GetMLModelRequest& request) const;
/**
* <p>Returns an <code>MLModel</code> that includes detailed metadata, data source
* information, and the current status of the <code>MLModel</code>.</p>
* <p><code>GetMLModel</code> provides results in normal or verbose format.
* </p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/GetMLModel">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void GetMLModelAsync(const Model::GetMLModelRequest& request, const GetMLModelResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Generates a prediction for the observation using the specified <code>ML
* Model</code>.</p> <title>Note</title> <p>Not all response parameters will
* be populated. Whether a response parameter is populated depends on the type of
* model requested.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/Predict">AWS
* API Reference</a></p>
*/
virtual Model::PredictOutcome Predict(const Model::PredictRequest& request) const;
/**
* <p>Generates a prediction for the observation using the specified <code>ML
* Model</code>.</p> <title>Note</title> <p>Not all response parameters will
* be populated. Whether a response parameter is populated depends on the type of
* model requested.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/Predict">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::PredictOutcomeCallable PredictCallable(const Model::PredictRequest& request) const;
/**
* <p>Generates a prediction for the observation using the specified <code>ML
* Model</code>.</p> <title>Note</title> <p>Not all response parameters will
* be populated. Whether a response parameter is populated depends on the type of
* model requested.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/Predict">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void PredictAsync(const Model::PredictRequest& request, const PredictResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Updates the <code>BatchPredictionName</code> of a
* <code>BatchPrediction</code>.</p> <p>You can use the
* <code>GetBatchPrediction</code> operation to view the contents of the updated
* data element.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/UpdateBatchPrediction">AWS
* API Reference</a></p>
*/
virtual Model::UpdateBatchPredictionOutcome UpdateBatchPrediction(const Model::UpdateBatchPredictionRequest& request) const;
/**
* <p>Updates the <code>BatchPredictionName</code> of a
* <code>BatchPrediction</code>.</p> <p>You can use the
* <code>GetBatchPrediction</code> operation to view the contents of the updated
* data element.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/UpdateBatchPrediction">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::UpdateBatchPredictionOutcomeCallable UpdateBatchPredictionCallable(const Model::UpdateBatchPredictionRequest& request) const;
/**
* <p>Updates the <code>BatchPredictionName</code> of a
* <code>BatchPrediction</code>.</p> <p>You can use the
* <code>GetBatchPrediction</code> operation to view the contents of the updated
* data element.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/UpdateBatchPrediction">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void UpdateBatchPredictionAsync(const Model::UpdateBatchPredictionRequest& request, const UpdateBatchPredictionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Updates the <code>DataSourceName</code> of a <code>DataSource</code>.</p>
* <p>You can use the <code>GetDataSource</code> operation to view the contents of
* the updated data element.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/UpdateDataSource">AWS
* API Reference</a></p>
*/
virtual Model::UpdateDataSourceOutcome UpdateDataSource(const Model::UpdateDataSourceRequest& request) const;
/**
* <p>Updates the <code>DataSourceName</code> of a <code>DataSource</code>.</p>
* <p>You can use the <code>GetDataSource</code> operation to view the contents of
* the updated data element.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/UpdateDataSource">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::UpdateDataSourceOutcomeCallable UpdateDataSourceCallable(const Model::UpdateDataSourceRequest& request) const;
/**
* <p>Updates the <code>DataSourceName</code> of a <code>DataSource</code>.</p>
* <p>You can use the <code>GetDataSource</code> operation to view the contents of
* the updated data element.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/UpdateDataSource">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void UpdateDataSourceAsync(const Model::UpdateDataSourceRequest& request, const UpdateDataSourceResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Updates the <code>EvaluationName</code> of an <code>Evaluation</code>.</p>
* <p>You can use the <code>GetEvaluation</code> operation to view the contents of
* the updated data element.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/UpdateEvaluation">AWS
* API Reference</a></p>
*/
virtual Model::UpdateEvaluationOutcome UpdateEvaluation(const Model::UpdateEvaluationRequest& request) const;
/**
* <p>Updates the <code>EvaluationName</code> of an <code>Evaluation</code>.</p>
* <p>You can use the <code>GetEvaluation</code> operation to view the contents of
* the updated data element.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/UpdateEvaluation">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::UpdateEvaluationOutcomeCallable UpdateEvaluationCallable(const Model::UpdateEvaluationRequest& request) const;
/**
* <p>Updates the <code>EvaluationName</code> of an <code>Evaluation</code>.</p>
* <p>You can use the <code>GetEvaluation</code> operation to view the contents of
* the updated data element.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/UpdateEvaluation">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void UpdateEvaluationAsync(const Model::UpdateEvaluationRequest& request, const UpdateEvaluationResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
/**
* <p>Updates the <code>MLModelName</code> and the <code>ScoreThreshold</code> of
* an <code>MLModel</code>.</p> <p>You can use the <code>GetMLModel</code>
* operation to view the contents of the updated data element.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/UpdateMLModel">AWS
* API Reference</a></p>
*/
virtual Model::UpdateMLModelOutcome UpdateMLModel(const Model::UpdateMLModelRequest& request) const;
/**
* <p>Updates the <code>MLModelName</code> and the <code>ScoreThreshold</code> of
* an <code>MLModel</code>.</p> <p>You can use the <code>GetMLModel</code>
* operation to view the contents of the updated data element.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/UpdateMLModel">AWS
* API Reference</a></p>
*
* returns a future to the operation so that it can be executed in parallel to other requests.
*/
virtual Model::UpdateMLModelOutcomeCallable UpdateMLModelCallable(const Model::UpdateMLModelRequest& request) const;
/**
* <p>Updates the <code>MLModelName</code> and the <code>ScoreThreshold</code> of
* an <code>MLModel</code>.</p> <p>You can use the <code>GetMLModel</code>
* operation to view the contents of the updated data element.</p><p><h3>See
* Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/UpdateMLModel">AWS
* API Reference</a></p>
*
* Queues the request into a thread executor and triggers associated callback when operation has finished.
*/
virtual void UpdateMLModelAsync(const Model::UpdateMLModelRequest& request, const UpdateMLModelResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context = nullptr) const;
void OverrideEndpoint(const Aws::String& endpoint);
private:
void init(const Aws::Client::ClientConfiguration& clientConfiguration);
void AddTagsAsyncHelper(const Model::AddTagsRequest& request, const AddTagsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void CreateBatchPredictionAsyncHelper(const Model::CreateBatchPredictionRequest& request, const CreateBatchPredictionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void CreateDataSourceFromRDSAsyncHelper(const Model::CreateDataSourceFromRDSRequest& request, const CreateDataSourceFromRDSResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void CreateDataSourceFromRedshiftAsyncHelper(const Model::CreateDataSourceFromRedshiftRequest& request, const CreateDataSourceFromRedshiftResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void CreateDataSourceFromS3AsyncHelper(const Model::CreateDataSourceFromS3Request& request, const CreateDataSourceFromS3ResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void CreateEvaluationAsyncHelper(const Model::CreateEvaluationRequest& request, const CreateEvaluationResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void CreateMLModelAsyncHelper(const Model::CreateMLModelRequest& request, const CreateMLModelResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void CreateRealtimeEndpointAsyncHelper(const Model::CreateRealtimeEndpointRequest& request, const CreateRealtimeEndpointResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DeleteBatchPredictionAsyncHelper(const Model::DeleteBatchPredictionRequest& request, const DeleteBatchPredictionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DeleteDataSourceAsyncHelper(const Model::DeleteDataSourceRequest& request, const DeleteDataSourceResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DeleteEvaluationAsyncHelper(const Model::DeleteEvaluationRequest& request, const DeleteEvaluationResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DeleteMLModelAsyncHelper(const Model::DeleteMLModelRequest& request, const DeleteMLModelResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DeleteRealtimeEndpointAsyncHelper(const Model::DeleteRealtimeEndpointRequest& request, const DeleteRealtimeEndpointResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DeleteTagsAsyncHelper(const Model::DeleteTagsRequest& request, const DeleteTagsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DescribeBatchPredictionsAsyncHelper(const Model::DescribeBatchPredictionsRequest& request, const DescribeBatchPredictionsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DescribeDataSourcesAsyncHelper(const Model::DescribeDataSourcesRequest& request, const DescribeDataSourcesResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DescribeEvaluationsAsyncHelper(const Model::DescribeEvaluationsRequest& request, const DescribeEvaluationsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DescribeMLModelsAsyncHelper(const Model::DescribeMLModelsRequest& request, const DescribeMLModelsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void DescribeTagsAsyncHelper(const Model::DescribeTagsRequest& request, const DescribeTagsResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void GetBatchPredictionAsyncHelper(const Model::GetBatchPredictionRequest& request, const GetBatchPredictionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void GetDataSourceAsyncHelper(const Model::GetDataSourceRequest& request, const GetDataSourceResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void GetEvaluationAsyncHelper(const Model::GetEvaluationRequest& request, const GetEvaluationResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void GetMLModelAsyncHelper(const Model::GetMLModelRequest& request, const GetMLModelResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void PredictAsyncHelper(const Model::PredictRequest& request, const PredictResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void UpdateBatchPredictionAsyncHelper(const Model::UpdateBatchPredictionRequest& request, const UpdateBatchPredictionResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void UpdateDataSourceAsyncHelper(const Model::UpdateDataSourceRequest& request, const UpdateDataSourceResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void UpdateEvaluationAsyncHelper(const Model::UpdateEvaluationRequest& request, const UpdateEvaluationResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
void UpdateMLModelAsyncHelper(const Model::UpdateMLModelRequest& request, const UpdateMLModelResponseReceivedHandler& handler, const std::shared_ptr<const Aws::Client::AsyncCallerContext>& context) const;
Aws::String m_uri;
Aws::String m_configScheme;
std::shared_ptr<Aws::Utils::Threading::Executor> m_executor;
};
} // namespace MachineLearning
} // namespace Aws