This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
pxz-hos-client-cpp-module/support/aws-sdk-cpp-master/aws-cpp-sdk-lex/include/aws/lex/model/PostContentResult.h

1069 lines
58 KiB
C++

/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include <aws/lex/LexRuntimeService_EXPORTS.h>
#include <aws/core/utils/stream/ResponseStream.h>
#include <aws/core/utils/memory/stl/AWSString.h>
#include <aws/lex/model/MessageFormatType.h>
#include <aws/lex/model/DialogState.h>
#include <aws/core/utils/Array.h>
#include <utility>
namespace Aws
{
template<typename RESULT_TYPE>
class AmazonWebServiceResult;
namespace LexRuntimeService
{
namespace Model
{
class AWS_LEXRUNTIMESERVICE_API PostContentResult
{
public:
PostContentResult();
//We have to define these because Microsoft doesn't auto generate them
PostContentResult(PostContentResult&&);
PostContentResult& operator=(PostContentResult&&);
//we delete these because Microsoft doesn't handle move generation correctly
//and we therefore don't trust them to get it right here either.
PostContentResult(const PostContentResult&) = delete;
PostContentResult& operator=(const PostContentResult&) = delete;
PostContentResult(Aws::AmazonWebServiceResult<Aws::Utils::Stream::ResponseStream>&& result);
PostContentResult& operator=(Aws::AmazonWebServiceResult<Aws::Utils::Stream::ResponseStream>&& result);
/**
* <p>Content type as specified in the <code>Accept</code> HTTP header in the
* request.</p>
*/
inline const Aws::String& GetContentType() const{ return m_contentType; }
/**
* <p>Content type as specified in the <code>Accept</code> HTTP header in the
* request.</p>
*/
inline void SetContentType(const Aws::String& value) { m_contentType = value; }
/**
* <p>Content type as specified in the <code>Accept</code> HTTP header in the
* request.</p>
*/
inline void SetContentType(Aws::String&& value) { m_contentType = std::move(value); }
/**
* <p>Content type as specified in the <code>Accept</code> HTTP header in the
* request.</p>
*/
inline void SetContentType(const char* value) { m_contentType.assign(value); }
/**
* <p>Content type as specified in the <code>Accept</code> HTTP header in the
* request.</p>
*/
inline PostContentResult& WithContentType(const Aws::String& value) { SetContentType(value); return *this;}
/**
* <p>Content type as specified in the <code>Accept</code> HTTP header in the
* request.</p>
*/
inline PostContentResult& WithContentType(Aws::String&& value) { SetContentType(std::move(value)); return *this;}
/**
* <p>Content type as specified in the <code>Accept</code> HTTP header in the
* request.</p>
*/
inline PostContentResult& WithContentType(const char* value) { SetContentType(value); return *this;}
/**
* <p>Current user intent that Amazon Lex is aware of.</p>
*/
inline const Aws::String& GetIntentName() const{ return m_intentName; }
/**
* <p>Current user intent that Amazon Lex is aware of.</p>
*/
inline void SetIntentName(const Aws::String& value) { m_intentName = value; }
/**
* <p>Current user intent that Amazon Lex is aware of.</p>
*/
inline void SetIntentName(Aws::String&& value) { m_intentName = std::move(value); }
/**
* <p>Current user intent that Amazon Lex is aware of.</p>
*/
inline void SetIntentName(const char* value) { m_intentName.assign(value); }
/**
* <p>Current user intent that Amazon Lex is aware of.</p>
*/
inline PostContentResult& WithIntentName(const Aws::String& value) { SetIntentName(value); return *this;}
/**
* <p>Current user intent that Amazon Lex is aware of.</p>
*/
inline PostContentResult& WithIntentName(Aws::String&& value) { SetIntentName(std::move(value)); return *this;}
/**
* <p>Current user intent that Amazon Lex is aware of.</p>
*/
inline PostContentResult& WithIntentName(const char* value) { SetIntentName(value); return *this;}
/**
* <p>Provides a score that indicates how confident Amazon Lex is that the returned
* intent is the one that matches the user's intent. The score is between 0.0 and
* 1.0.</p> <p>The score is a relative score, not an absolute score. The score may
* change based on improvements to the Amazon Lex NLU.</p>
*/
inline const Aws::String& GetNluIntentConfidence() const{ return m_nluIntentConfidence; }
/**
* <p>Provides a score that indicates how confident Amazon Lex is that the returned
* intent is the one that matches the user's intent. The score is between 0.0 and
* 1.0.</p> <p>The score is a relative score, not an absolute score. The score may
* change based on improvements to the Amazon Lex NLU.</p>
*/
inline void SetNluIntentConfidence(const Aws::String& value) { m_nluIntentConfidence = value; }
/**
* <p>Provides a score that indicates how confident Amazon Lex is that the returned
* intent is the one that matches the user's intent. The score is between 0.0 and
* 1.0.</p> <p>The score is a relative score, not an absolute score. The score may
* change based on improvements to the Amazon Lex NLU.</p>
*/
inline void SetNluIntentConfidence(Aws::String&& value) { m_nluIntentConfidence = std::move(value); }
/**
* <p>Provides a score that indicates how confident Amazon Lex is that the returned
* intent is the one that matches the user's intent. The score is between 0.0 and
* 1.0.</p> <p>The score is a relative score, not an absolute score. The score may
* change based on improvements to the Amazon Lex NLU.</p>
*/
inline void SetNluIntentConfidence(const char* value) { m_nluIntentConfidence.assign(value); }
/**
* <p>Provides a score that indicates how confident Amazon Lex is that the returned
* intent is the one that matches the user's intent. The score is between 0.0 and
* 1.0.</p> <p>The score is a relative score, not an absolute score. The score may
* change based on improvements to the Amazon Lex NLU.</p>
*/
inline PostContentResult& WithNluIntentConfidence(const Aws::String& value) { SetNluIntentConfidence(value); return *this;}
/**
* <p>Provides a score that indicates how confident Amazon Lex is that the returned
* intent is the one that matches the user's intent. The score is between 0.0 and
* 1.0.</p> <p>The score is a relative score, not an absolute score. The score may
* change based on improvements to the Amazon Lex NLU.</p>
*/
inline PostContentResult& WithNluIntentConfidence(Aws::String&& value) { SetNluIntentConfidence(std::move(value)); return *this;}
/**
* <p>Provides a score that indicates how confident Amazon Lex is that the returned
* intent is the one that matches the user's intent. The score is between 0.0 and
* 1.0.</p> <p>The score is a relative score, not an absolute score. The score may
* change based on improvements to the Amazon Lex NLU.</p>
*/
inline PostContentResult& WithNluIntentConfidence(const char* value) { SetNluIntentConfidence(value); return *this;}
/**
* <p>One to four alternative intents that may be applicable to the user's
* intent.</p> <p>Each alternative includes a score that indicates how confident
* Amazon Lex is that the intent matches the user's intent. The intents are sorted
* by the confidence score.</p>
*/
inline const Aws::String& GetAlternativeIntents() const{ return m_alternativeIntents; }
/**
* <p>One to four alternative intents that may be applicable to the user's
* intent.</p> <p>Each alternative includes a score that indicates how confident
* Amazon Lex is that the intent matches the user's intent. The intents are sorted
* by the confidence score.</p>
*/
inline void SetAlternativeIntents(const Aws::String& value) { m_alternativeIntents = value; }
/**
* <p>One to four alternative intents that may be applicable to the user's
* intent.</p> <p>Each alternative includes a score that indicates how confident
* Amazon Lex is that the intent matches the user's intent. The intents are sorted
* by the confidence score.</p>
*/
inline void SetAlternativeIntents(Aws::String&& value) { m_alternativeIntents = std::move(value); }
/**
* <p>One to four alternative intents that may be applicable to the user's
* intent.</p> <p>Each alternative includes a score that indicates how confident
* Amazon Lex is that the intent matches the user's intent. The intents are sorted
* by the confidence score.</p>
*/
inline void SetAlternativeIntents(const char* value) { m_alternativeIntents.assign(value); }
/**
* <p>One to four alternative intents that may be applicable to the user's
* intent.</p> <p>Each alternative includes a score that indicates how confident
* Amazon Lex is that the intent matches the user's intent. The intents are sorted
* by the confidence score.</p>
*/
inline PostContentResult& WithAlternativeIntents(const Aws::String& value) { SetAlternativeIntents(value); return *this;}
/**
* <p>One to four alternative intents that may be applicable to the user's
* intent.</p> <p>Each alternative includes a score that indicates how confident
* Amazon Lex is that the intent matches the user's intent. The intents are sorted
* by the confidence score.</p>
*/
inline PostContentResult& WithAlternativeIntents(Aws::String&& value) { SetAlternativeIntents(std::move(value)); return *this;}
/**
* <p>One to four alternative intents that may be applicable to the user's
* intent.</p> <p>Each alternative includes a score that indicates how confident
* Amazon Lex is that the intent matches the user's intent. The intents are sorted
* by the confidence score.</p>
*/
inline PostContentResult& WithAlternativeIntents(const char* value) { SetAlternativeIntents(value); return *this;}
/**
* <p>Map of zero or more intent slots (name/value pairs) Amazon Lex detected from
* the user input during the conversation. The field is base-64 encoded.</p>
* <p>Amazon Lex creates a resolution list containing likely values for a slot. The
* value that it returns is determined by the <code>valueSelectionStrategy</code>
* selected when the slot type was created or updated. If
* <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the
* value provided by the user is returned, if the user value is similar to the slot
* values. If <code>valueSelectionStrategy</code> is set to
* <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution
* list or, if there is no resolution list, null. If you don't specify a
* <code>valueSelectionStrategy</code>, the default is
* <code>ORIGINAL_VALUE</code>.</p>
*/
inline const Aws::String& GetSlots() const{ return m_slots; }
/**
* <p>Map of zero or more intent slots (name/value pairs) Amazon Lex detected from
* the user input during the conversation. The field is base-64 encoded.</p>
* <p>Amazon Lex creates a resolution list containing likely values for a slot. The
* value that it returns is determined by the <code>valueSelectionStrategy</code>
* selected when the slot type was created or updated. If
* <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the
* value provided by the user is returned, if the user value is similar to the slot
* values. If <code>valueSelectionStrategy</code> is set to
* <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution
* list or, if there is no resolution list, null. If you don't specify a
* <code>valueSelectionStrategy</code>, the default is
* <code>ORIGINAL_VALUE</code>.</p>
*/
inline void SetSlots(const Aws::String& value) { m_slots = value; }
/**
* <p>Map of zero or more intent slots (name/value pairs) Amazon Lex detected from
* the user input during the conversation. The field is base-64 encoded.</p>
* <p>Amazon Lex creates a resolution list containing likely values for a slot. The
* value that it returns is determined by the <code>valueSelectionStrategy</code>
* selected when the slot type was created or updated. If
* <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the
* value provided by the user is returned, if the user value is similar to the slot
* values. If <code>valueSelectionStrategy</code> is set to
* <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution
* list or, if there is no resolution list, null. If you don't specify a
* <code>valueSelectionStrategy</code>, the default is
* <code>ORIGINAL_VALUE</code>.</p>
*/
inline void SetSlots(Aws::String&& value) { m_slots = std::move(value); }
/**
* <p>Map of zero or more intent slots (name/value pairs) Amazon Lex detected from
* the user input during the conversation. The field is base-64 encoded.</p>
* <p>Amazon Lex creates a resolution list containing likely values for a slot. The
* value that it returns is determined by the <code>valueSelectionStrategy</code>
* selected when the slot type was created or updated. If
* <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the
* value provided by the user is returned, if the user value is similar to the slot
* values. If <code>valueSelectionStrategy</code> is set to
* <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution
* list or, if there is no resolution list, null. If you don't specify a
* <code>valueSelectionStrategy</code>, the default is
* <code>ORIGINAL_VALUE</code>.</p>
*/
inline void SetSlots(const char* value) { m_slots.assign(value); }
/**
* <p>Map of zero or more intent slots (name/value pairs) Amazon Lex detected from
* the user input during the conversation. The field is base-64 encoded.</p>
* <p>Amazon Lex creates a resolution list containing likely values for a slot. The
* value that it returns is determined by the <code>valueSelectionStrategy</code>
* selected when the slot type was created or updated. If
* <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the
* value provided by the user is returned, if the user value is similar to the slot
* values. If <code>valueSelectionStrategy</code> is set to
* <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution
* list or, if there is no resolution list, null. If you don't specify a
* <code>valueSelectionStrategy</code>, the default is
* <code>ORIGINAL_VALUE</code>.</p>
*/
inline PostContentResult& WithSlots(const Aws::String& value) { SetSlots(value); return *this;}
/**
* <p>Map of zero or more intent slots (name/value pairs) Amazon Lex detected from
* the user input during the conversation. The field is base-64 encoded.</p>
* <p>Amazon Lex creates a resolution list containing likely values for a slot. The
* value that it returns is determined by the <code>valueSelectionStrategy</code>
* selected when the slot type was created or updated. If
* <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the
* value provided by the user is returned, if the user value is similar to the slot
* values. If <code>valueSelectionStrategy</code> is set to
* <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution
* list or, if there is no resolution list, null. If you don't specify a
* <code>valueSelectionStrategy</code>, the default is
* <code>ORIGINAL_VALUE</code>.</p>
*/
inline PostContentResult& WithSlots(Aws::String&& value) { SetSlots(std::move(value)); return *this;}
/**
* <p>Map of zero or more intent slots (name/value pairs) Amazon Lex detected from
* the user input during the conversation. The field is base-64 encoded.</p>
* <p>Amazon Lex creates a resolution list containing likely values for a slot. The
* value that it returns is determined by the <code>valueSelectionStrategy</code>
* selected when the slot type was created or updated. If
* <code>valueSelectionStrategy</code> is set to <code>ORIGINAL_VALUE</code>, the
* value provided by the user is returned, if the user value is similar to the slot
* values. If <code>valueSelectionStrategy</code> is set to
* <code>TOP_RESOLUTION</code> Amazon Lex returns the first value in the resolution
* list or, if there is no resolution list, null. If you don't specify a
* <code>valueSelectionStrategy</code>, the default is
* <code>ORIGINAL_VALUE</code>.</p>
*/
inline PostContentResult& WithSlots(const char* value) { SetSlots(value); return *this;}
/**
* <p> Map of key/value pairs representing the session-specific context
* information. </p>
*/
inline const Aws::String& GetSessionAttributes() const{ return m_sessionAttributes; }
/**
* <p> Map of key/value pairs representing the session-specific context
* information. </p>
*/
inline void SetSessionAttributes(const Aws::String& value) { m_sessionAttributes = value; }
/**
* <p> Map of key/value pairs representing the session-specific context
* information. </p>
*/
inline void SetSessionAttributes(Aws::String&& value) { m_sessionAttributes = std::move(value); }
/**
* <p> Map of key/value pairs representing the session-specific context
* information. </p>
*/
inline void SetSessionAttributes(const char* value) { m_sessionAttributes.assign(value); }
/**
* <p> Map of key/value pairs representing the session-specific context
* information. </p>
*/
inline PostContentResult& WithSessionAttributes(const Aws::String& value) { SetSessionAttributes(value); return *this;}
/**
* <p> Map of key/value pairs representing the session-specific context
* information. </p>
*/
inline PostContentResult& WithSessionAttributes(Aws::String&& value) { SetSessionAttributes(std::move(value)); return *this;}
/**
* <p> Map of key/value pairs representing the session-specific context
* information. </p>
*/
inline PostContentResult& WithSessionAttributes(const char* value) { SetSessionAttributes(value); return *this;}
/**
* <p>The sentiment expressed in an utterance.</p> <p>When the bot is configured to
* send utterances to Amazon Comprehend for sentiment analysis, this field contains
* the result of the analysis.</p>
*/
inline const Aws::String& GetSentimentResponse() const{ return m_sentimentResponse; }
/**
* <p>The sentiment expressed in an utterance.</p> <p>When the bot is configured to
* send utterances to Amazon Comprehend for sentiment analysis, this field contains
* the result of the analysis.</p>
*/
inline void SetSentimentResponse(const Aws::String& value) { m_sentimentResponse = value; }
/**
* <p>The sentiment expressed in an utterance.</p> <p>When the bot is configured to
* send utterances to Amazon Comprehend for sentiment analysis, this field contains
* the result of the analysis.</p>
*/
inline void SetSentimentResponse(Aws::String&& value) { m_sentimentResponse = std::move(value); }
/**
* <p>The sentiment expressed in an utterance.</p> <p>When the bot is configured to
* send utterances to Amazon Comprehend for sentiment analysis, this field contains
* the result of the analysis.</p>
*/
inline void SetSentimentResponse(const char* value) { m_sentimentResponse.assign(value); }
/**
* <p>The sentiment expressed in an utterance.</p> <p>When the bot is configured to
* send utterances to Amazon Comprehend for sentiment analysis, this field contains
* the result of the analysis.</p>
*/
inline PostContentResult& WithSentimentResponse(const Aws::String& value) { SetSentimentResponse(value); return *this;}
/**
* <p>The sentiment expressed in an utterance.</p> <p>When the bot is configured to
* send utterances to Amazon Comprehend for sentiment analysis, this field contains
* the result of the analysis.</p>
*/
inline PostContentResult& WithSentimentResponse(Aws::String&& value) { SetSentimentResponse(std::move(value)); return *this;}
/**
* <p>The sentiment expressed in an utterance.</p> <p>When the bot is configured to
* send utterances to Amazon Comprehend for sentiment analysis, this field contains
* the result of the analysis.</p>
*/
inline PostContentResult& WithSentimentResponse(const char* value) { SetSentimentResponse(value); return *this;}
/**
* <p>The message to convey to the user. The message can come from the bot's
* configuration or from a Lambda function.</p> <p>If the intent is not configured
* with a Lambda function, or if the Lambda function returned <code>Delegate</code>
* as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the
* next course of action and selects an appropriate message from the bot's
* configuration based on the current interaction context. For example, if Amazon
* Lex isn't able to understand user input, it uses a clarification prompt
* message.</p> <p>When you create an intent you can assign messages to groups.
* When messages are assigned to groups Amazon Lex returns one message from each
* group in the response. The message field is an escaped JSON string containing
* the messages. For more information about the structure of the JSON string
* returned, see <a>msg-prompts-formats</a>.</p> <p>If the Lambda function returns
* a message, Amazon Lex passes it to the client in its response.</p>
*/
inline const Aws::String& GetMessage() const{ return m_message; }
/**
* <p>The message to convey to the user. The message can come from the bot's
* configuration or from a Lambda function.</p> <p>If the intent is not configured
* with a Lambda function, or if the Lambda function returned <code>Delegate</code>
* as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the
* next course of action and selects an appropriate message from the bot's
* configuration based on the current interaction context. For example, if Amazon
* Lex isn't able to understand user input, it uses a clarification prompt
* message.</p> <p>When you create an intent you can assign messages to groups.
* When messages are assigned to groups Amazon Lex returns one message from each
* group in the response. The message field is an escaped JSON string containing
* the messages. For more information about the structure of the JSON string
* returned, see <a>msg-prompts-formats</a>.</p> <p>If the Lambda function returns
* a message, Amazon Lex passes it to the client in its response.</p>
*/
inline void SetMessage(const Aws::String& value) { m_message = value; }
/**
* <p>The message to convey to the user. The message can come from the bot's
* configuration or from a Lambda function.</p> <p>If the intent is not configured
* with a Lambda function, or if the Lambda function returned <code>Delegate</code>
* as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the
* next course of action and selects an appropriate message from the bot's
* configuration based on the current interaction context. For example, if Amazon
* Lex isn't able to understand user input, it uses a clarification prompt
* message.</p> <p>When you create an intent you can assign messages to groups.
* When messages are assigned to groups Amazon Lex returns one message from each
* group in the response. The message field is an escaped JSON string containing
* the messages. For more information about the structure of the JSON string
* returned, see <a>msg-prompts-formats</a>.</p> <p>If the Lambda function returns
* a message, Amazon Lex passes it to the client in its response.</p>
*/
inline void SetMessage(Aws::String&& value) { m_message = std::move(value); }
/**
* <p>The message to convey to the user. The message can come from the bot's
* configuration or from a Lambda function.</p> <p>If the intent is not configured
* with a Lambda function, or if the Lambda function returned <code>Delegate</code>
* as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the
* next course of action and selects an appropriate message from the bot's
* configuration based on the current interaction context. For example, if Amazon
* Lex isn't able to understand user input, it uses a clarification prompt
* message.</p> <p>When you create an intent you can assign messages to groups.
* When messages are assigned to groups Amazon Lex returns one message from each
* group in the response. The message field is an escaped JSON string containing
* the messages. For more information about the structure of the JSON string
* returned, see <a>msg-prompts-formats</a>.</p> <p>If the Lambda function returns
* a message, Amazon Lex passes it to the client in its response.</p>
*/
inline void SetMessage(const char* value) { m_message.assign(value); }
/**
* <p>The message to convey to the user. The message can come from the bot's
* configuration or from a Lambda function.</p> <p>If the intent is not configured
* with a Lambda function, or if the Lambda function returned <code>Delegate</code>
* as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the
* next course of action and selects an appropriate message from the bot's
* configuration based on the current interaction context. For example, if Amazon
* Lex isn't able to understand user input, it uses a clarification prompt
* message.</p> <p>When you create an intent you can assign messages to groups.
* When messages are assigned to groups Amazon Lex returns one message from each
* group in the response. The message field is an escaped JSON string containing
* the messages. For more information about the structure of the JSON string
* returned, see <a>msg-prompts-formats</a>.</p> <p>If the Lambda function returns
* a message, Amazon Lex passes it to the client in its response.</p>
*/
inline PostContentResult& WithMessage(const Aws::String& value) { SetMessage(value); return *this;}
/**
* <p>The message to convey to the user. The message can come from the bot's
* configuration or from a Lambda function.</p> <p>If the intent is not configured
* with a Lambda function, or if the Lambda function returned <code>Delegate</code>
* as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the
* next course of action and selects an appropriate message from the bot's
* configuration based on the current interaction context. For example, if Amazon
* Lex isn't able to understand user input, it uses a clarification prompt
* message.</p> <p>When you create an intent you can assign messages to groups.
* When messages are assigned to groups Amazon Lex returns one message from each
* group in the response. The message field is an escaped JSON string containing
* the messages. For more information about the structure of the JSON string
* returned, see <a>msg-prompts-formats</a>.</p> <p>If the Lambda function returns
* a message, Amazon Lex passes it to the client in its response.</p>
*/
inline PostContentResult& WithMessage(Aws::String&& value) { SetMessage(std::move(value)); return *this;}
/**
* <p>The message to convey to the user. The message can come from the bot's
* configuration or from a Lambda function.</p> <p>If the intent is not configured
* with a Lambda function, or if the Lambda function returned <code>Delegate</code>
* as the <code>dialogAction.type</code> in its response, Amazon Lex decides on the
* next course of action and selects an appropriate message from the bot's
* configuration based on the current interaction context. For example, if Amazon
* Lex isn't able to understand user input, it uses a clarification prompt
* message.</p> <p>When you create an intent you can assign messages to groups.
* When messages are assigned to groups Amazon Lex returns one message from each
* group in the response. The message field is an escaped JSON string containing
* the messages. For more information about the structure of the JSON string
* returned, see <a>msg-prompts-formats</a>.</p> <p>If the Lambda function returns
* a message, Amazon Lex passes it to the client in its response.</p>
*/
inline PostContentResult& WithMessage(const char* value) { SetMessage(value); return *this;}
/**
* <p>The format of the response message. One of the following values:</p> <ul>
* <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p>
* </li> <li> <p> <code>CustomPayload</code> - The message is a custom format for
* the client.</p> </li> <li> <p> <code>SSML</code> - The message contains text
* formatted for voice output.</p> </li> <li> <p> <code>Composite</code> - The
* message contains an escaped JSON object containing one or more messages from the
* groups that messages were assigned to when the intent was created.</p> </li>
* </ul>
*/
inline const MessageFormatType& GetMessageFormat() const{ return m_messageFormat; }
/**
* <p>The format of the response message. One of the following values:</p> <ul>
* <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p>
* </li> <li> <p> <code>CustomPayload</code> - The message is a custom format for
* the client.</p> </li> <li> <p> <code>SSML</code> - The message contains text
* formatted for voice output.</p> </li> <li> <p> <code>Composite</code> - The
* message contains an escaped JSON object containing one or more messages from the
* groups that messages were assigned to when the intent was created.</p> </li>
* </ul>
*/
inline void SetMessageFormat(const MessageFormatType& value) { m_messageFormat = value; }
/**
* <p>The format of the response message. One of the following values:</p> <ul>
* <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p>
* </li> <li> <p> <code>CustomPayload</code> - The message is a custom format for
* the client.</p> </li> <li> <p> <code>SSML</code> - The message contains text
* formatted for voice output.</p> </li> <li> <p> <code>Composite</code> - The
* message contains an escaped JSON object containing one or more messages from the
* groups that messages were assigned to when the intent was created.</p> </li>
* </ul>
*/
inline void SetMessageFormat(MessageFormatType&& value) { m_messageFormat = std::move(value); }
/**
* <p>The format of the response message. One of the following values:</p> <ul>
* <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p>
* </li> <li> <p> <code>CustomPayload</code> - The message is a custom format for
* the client.</p> </li> <li> <p> <code>SSML</code> - The message contains text
* formatted for voice output.</p> </li> <li> <p> <code>Composite</code> - The
* message contains an escaped JSON object containing one or more messages from the
* groups that messages were assigned to when the intent was created.</p> </li>
* </ul>
*/
inline PostContentResult& WithMessageFormat(const MessageFormatType& value) { SetMessageFormat(value); return *this;}
/**
* <p>The format of the response message. One of the following values:</p> <ul>
* <li> <p> <code>PlainText</code> - The message contains plain UTF-8 text.</p>
* </li> <li> <p> <code>CustomPayload</code> - The message is a custom format for
* the client.</p> </li> <li> <p> <code>SSML</code> - The message contains text
* formatted for voice output.</p> </li> <li> <p> <code>Composite</code> - The
* message contains an escaped JSON object containing one or more messages from the
* groups that messages were assigned to when the intent was created.</p> </li>
* </ul>
*/
inline PostContentResult& WithMessageFormat(MessageFormatType&& value) { SetMessageFormat(std::move(value)); return *this;}
/**
* <p>Identifies the current state of the user interaction. Amazon Lex returns one
* of the following values as <code>dialogState</code>. The client can optionally
* use this information to customize the user interface. </p> <ul> <li> <p>
* <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent.
* Consider the following examples: </p> <p> For example, a user might utter an
* intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent
* from this utterance, it will return this dialog state. </p> </li> <li> <p>
* <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response.
* </p> <p>For example, Amazon Lex wants user confirmation before fulfilling an
* intent. Instead of a simple "yes" or "no" response, a user might respond with
* additional information. For example, "yes, but make it a thick crust pizza" or
* "no, I want to order a drink." Amazon Lex can process such additional
* information (in these examples, update the crust type slot or change the intent
* from OrderPizza to OrderDrink). </p> </li> <li> <p> <code>ElicitSlot</code> -
* Amazon Lex is expecting the value of a slot for the current intent. </p> <p> For
* example, suppose that in the response Amazon Lex sends this message: "What size
* pizza would you like?". A user might reply with the slot value (e.g., "medium").
* The user might also provide additional information in the response (e.g.,
* "medium thick crust pizza"). Amazon Lex can process such additional information
* appropriately. </p> </li> <li> <p> <code>Fulfilled</code> - Conveys that the
* Lambda function has successfully fulfilled the intent. </p> </li> <li> <p>
* <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the
* request. </p> </li> <li> <p> <code>Failed</code> - Conveys that the conversation
* with the user failed. </p> <p> This can happen for various reasons, including
* that the user does not provide an appropriate response to prompts from the
* service (you can configure how many times Amazon Lex can prompt a user for
* specific information), or if the Lambda function fails to fulfill the intent.
* </p> </li> </ul>
*/
inline const DialogState& GetDialogState() const{ return m_dialogState; }
/**
* <p>Identifies the current state of the user interaction. Amazon Lex returns one
* of the following values as <code>dialogState</code>. The client can optionally
* use this information to customize the user interface. </p> <ul> <li> <p>
* <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent.
* Consider the following examples: </p> <p> For example, a user might utter an
* intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent
* from this utterance, it will return this dialog state. </p> </li> <li> <p>
* <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response.
* </p> <p>For example, Amazon Lex wants user confirmation before fulfilling an
* intent. Instead of a simple "yes" or "no" response, a user might respond with
* additional information. For example, "yes, but make it a thick crust pizza" or
* "no, I want to order a drink." Amazon Lex can process such additional
* information (in these examples, update the crust type slot or change the intent
* from OrderPizza to OrderDrink). </p> </li> <li> <p> <code>ElicitSlot</code> -
* Amazon Lex is expecting the value of a slot for the current intent. </p> <p> For
* example, suppose that in the response Amazon Lex sends this message: "What size
* pizza would you like?". A user might reply with the slot value (e.g., "medium").
* The user might also provide additional information in the response (e.g.,
* "medium thick crust pizza"). Amazon Lex can process such additional information
* appropriately. </p> </li> <li> <p> <code>Fulfilled</code> - Conveys that the
* Lambda function has successfully fulfilled the intent. </p> </li> <li> <p>
* <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the
* request. </p> </li> <li> <p> <code>Failed</code> - Conveys that the conversation
* with the user failed. </p> <p> This can happen for various reasons, including
* that the user does not provide an appropriate response to prompts from the
* service (you can configure how many times Amazon Lex can prompt a user for
* specific information), or if the Lambda function fails to fulfill the intent.
* </p> </li> </ul>
*/
inline void SetDialogState(const DialogState& value) { m_dialogState = value; }
/**
* <p>Identifies the current state of the user interaction. Amazon Lex returns one
* of the following values as <code>dialogState</code>. The client can optionally
* use this information to customize the user interface. </p> <ul> <li> <p>
* <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent.
* Consider the following examples: </p> <p> For example, a user might utter an
* intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent
* from this utterance, it will return this dialog state. </p> </li> <li> <p>
* <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response.
* </p> <p>For example, Amazon Lex wants user confirmation before fulfilling an
* intent. Instead of a simple "yes" or "no" response, a user might respond with
* additional information. For example, "yes, but make it a thick crust pizza" or
* "no, I want to order a drink." Amazon Lex can process such additional
* information (in these examples, update the crust type slot or change the intent
* from OrderPizza to OrderDrink). </p> </li> <li> <p> <code>ElicitSlot</code> -
* Amazon Lex is expecting the value of a slot for the current intent. </p> <p> For
* example, suppose that in the response Amazon Lex sends this message: "What size
* pizza would you like?". A user might reply with the slot value (e.g., "medium").
* The user might also provide additional information in the response (e.g.,
* "medium thick crust pizza"). Amazon Lex can process such additional information
* appropriately. </p> </li> <li> <p> <code>Fulfilled</code> - Conveys that the
* Lambda function has successfully fulfilled the intent. </p> </li> <li> <p>
* <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the
* request. </p> </li> <li> <p> <code>Failed</code> - Conveys that the conversation
* with the user failed. </p> <p> This can happen for various reasons, including
* that the user does not provide an appropriate response to prompts from the
* service (you can configure how many times Amazon Lex can prompt a user for
* specific information), or if the Lambda function fails to fulfill the intent.
* </p> </li> </ul>
*/
inline void SetDialogState(DialogState&& value) { m_dialogState = std::move(value); }
/**
* <p>Identifies the current state of the user interaction. Amazon Lex returns one
* of the following values as <code>dialogState</code>. The client can optionally
* use this information to customize the user interface. </p> <ul> <li> <p>
* <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent.
* Consider the following examples: </p> <p> For example, a user might utter an
* intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent
* from this utterance, it will return this dialog state. </p> </li> <li> <p>
* <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response.
* </p> <p>For example, Amazon Lex wants user confirmation before fulfilling an
* intent. Instead of a simple "yes" or "no" response, a user might respond with
* additional information. For example, "yes, but make it a thick crust pizza" or
* "no, I want to order a drink." Amazon Lex can process such additional
* information (in these examples, update the crust type slot or change the intent
* from OrderPizza to OrderDrink). </p> </li> <li> <p> <code>ElicitSlot</code> -
* Amazon Lex is expecting the value of a slot for the current intent. </p> <p> For
* example, suppose that in the response Amazon Lex sends this message: "What size
* pizza would you like?". A user might reply with the slot value (e.g., "medium").
* The user might also provide additional information in the response (e.g.,
* "medium thick crust pizza"). Amazon Lex can process such additional information
* appropriately. </p> </li> <li> <p> <code>Fulfilled</code> - Conveys that the
* Lambda function has successfully fulfilled the intent. </p> </li> <li> <p>
* <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the
* request. </p> </li> <li> <p> <code>Failed</code> - Conveys that the conversation
* with the user failed. </p> <p> This can happen for various reasons, including
* that the user does not provide an appropriate response to prompts from the
* service (you can configure how many times Amazon Lex can prompt a user for
* specific information), or if the Lambda function fails to fulfill the intent.
* </p> </li> </ul>
*/
inline PostContentResult& WithDialogState(const DialogState& value) { SetDialogState(value); return *this;}
/**
* <p>Identifies the current state of the user interaction. Amazon Lex returns one
* of the following values as <code>dialogState</code>. The client can optionally
* use this information to customize the user interface. </p> <ul> <li> <p>
* <code>ElicitIntent</code> - Amazon Lex wants to elicit the user's intent.
* Consider the following examples: </p> <p> For example, a user might utter an
* intent ("I want to order a pizza"). If Amazon Lex cannot infer the user intent
* from this utterance, it will return this dialog state. </p> </li> <li> <p>
* <code>ConfirmIntent</code> - Amazon Lex is expecting a "yes" or "no" response.
* </p> <p>For example, Amazon Lex wants user confirmation before fulfilling an
* intent. Instead of a simple "yes" or "no" response, a user might respond with
* additional information. For example, "yes, but make it a thick crust pizza" or
* "no, I want to order a drink." Amazon Lex can process such additional
* information (in these examples, update the crust type slot or change the intent
* from OrderPizza to OrderDrink). </p> </li> <li> <p> <code>ElicitSlot</code> -
* Amazon Lex is expecting the value of a slot for the current intent. </p> <p> For
* example, suppose that in the response Amazon Lex sends this message: "What size
* pizza would you like?". A user might reply with the slot value (e.g., "medium").
* The user might also provide additional information in the response (e.g.,
* "medium thick crust pizza"). Amazon Lex can process such additional information
* appropriately. </p> </li> <li> <p> <code>Fulfilled</code> - Conveys that the
* Lambda function has successfully fulfilled the intent. </p> </li> <li> <p>
* <code>ReadyForFulfillment</code> - Conveys that the client has to fulfill the
* request. </p> </li> <li> <p> <code>Failed</code> - Conveys that the conversation
* with the user failed. </p> <p> This can happen for various reasons, including
* that the user does not provide an appropriate response to prompts from the
* service (you can configure how many times Amazon Lex can prompt a user for
* specific information), or if the Lambda function fails to fulfill the intent.
* </p> </li> </ul>
*/
inline PostContentResult& WithDialogState(DialogState&& value) { SetDialogState(std::move(value)); return *this;}
/**
* <p> If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns
* the name of the slot for which Amazon Lex is eliciting a value. </p>
*/
inline const Aws::String& GetSlotToElicit() const{ return m_slotToElicit; }
/**
* <p> If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns
* the name of the slot for which Amazon Lex is eliciting a value. </p>
*/
inline void SetSlotToElicit(const Aws::String& value) { m_slotToElicit = value; }
/**
* <p> If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns
* the name of the slot for which Amazon Lex is eliciting a value. </p>
*/
inline void SetSlotToElicit(Aws::String&& value) { m_slotToElicit = std::move(value); }
/**
* <p> If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns
* the name of the slot for which Amazon Lex is eliciting a value. </p>
*/
inline void SetSlotToElicit(const char* value) { m_slotToElicit.assign(value); }
/**
* <p> If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns
* the name of the slot for which Amazon Lex is eliciting a value. </p>
*/
inline PostContentResult& WithSlotToElicit(const Aws::String& value) { SetSlotToElicit(value); return *this;}
/**
* <p> If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns
* the name of the slot for which Amazon Lex is eliciting a value. </p>
*/
inline PostContentResult& WithSlotToElicit(Aws::String&& value) { SetSlotToElicit(std::move(value)); return *this;}
/**
* <p> If the <code>dialogState</code> value is <code>ElicitSlot</code>, returns
* the name of the slot for which Amazon Lex is eliciting a value. </p>
*/
inline PostContentResult& WithSlotToElicit(const char* value) { SetSlotToElicit(value); return *this;}
/**
* <p>The text used to process the request.</p> <p>If the input was an audio
* stream, the <code>inputTranscript</code> field contains the text extracted from
* the audio stream. This is the text that is actually processed to recognize
* intents and slot values. You can use this information to determine if Amazon Lex
* is correctly processing the audio that you send.</p>
*/
inline const Aws::String& GetInputTranscript() const{ return m_inputTranscript; }
/**
* <p>The text used to process the request.</p> <p>If the input was an audio
* stream, the <code>inputTranscript</code> field contains the text extracted from
* the audio stream. This is the text that is actually processed to recognize
* intents and slot values. You can use this information to determine if Amazon Lex
* is correctly processing the audio that you send.</p>
*/
inline void SetInputTranscript(const Aws::String& value) { m_inputTranscript = value; }
/**
* <p>The text used to process the request.</p> <p>If the input was an audio
* stream, the <code>inputTranscript</code> field contains the text extracted from
* the audio stream. This is the text that is actually processed to recognize
* intents and slot values. You can use this information to determine if Amazon Lex
* is correctly processing the audio that you send.</p>
*/
inline void SetInputTranscript(Aws::String&& value) { m_inputTranscript = std::move(value); }
/**
* <p>The text used to process the request.</p> <p>If the input was an audio
* stream, the <code>inputTranscript</code> field contains the text extracted from
* the audio stream. This is the text that is actually processed to recognize
* intents and slot values. You can use this information to determine if Amazon Lex
* is correctly processing the audio that you send.</p>
*/
inline void SetInputTranscript(const char* value) { m_inputTranscript.assign(value); }
/**
* <p>The text used to process the request.</p> <p>If the input was an audio
* stream, the <code>inputTranscript</code> field contains the text extracted from
* the audio stream. This is the text that is actually processed to recognize
* intents and slot values. You can use this information to determine if Amazon Lex
* is correctly processing the audio that you send.</p>
*/
inline PostContentResult& WithInputTranscript(const Aws::String& value) { SetInputTranscript(value); return *this;}
/**
* <p>The text used to process the request.</p> <p>If the input was an audio
* stream, the <code>inputTranscript</code> field contains the text extracted from
* the audio stream. This is the text that is actually processed to recognize
* intents and slot values. You can use this information to determine if Amazon Lex
* is correctly processing the audio that you send.</p>
*/
inline PostContentResult& WithInputTranscript(Aws::String&& value) { SetInputTranscript(std::move(value)); return *this;}
/**
* <p>The text used to process the request.</p> <p>If the input was an audio
* stream, the <code>inputTranscript</code> field contains the text extracted from
* the audio stream. This is the text that is actually processed to recognize
* intents and slot values. You can use this information to determine if Amazon Lex
* is correctly processing the audio that you send.</p>
*/
inline PostContentResult& WithInputTranscript(const char* value) { SetInputTranscript(value); return *this;}
/**
* <p>The prompt (or statement) to convey to the user. This is based on the bot
* configuration and context. For example, if Amazon Lex did not understand the
* user intent, it sends the <code>clarificationPrompt</code> configured for the
* bot. If the intent requires confirmation before taking the fulfillment action,
* it sends the <code>confirmationPrompt</code>. Another example: Suppose that the
* Lambda function successfully fulfilled the intent, and sent a message to convey
* to the user. Then Amazon Lex sends that message in the response. </p>
*/
inline Aws::IOStream& GetAudioStream() { return m_audioStream.GetUnderlyingStream(); }
/**
* <p>The prompt (or statement) to convey to the user. This is based on the bot
* configuration and context. For example, if Amazon Lex did not understand the
* user intent, it sends the <code>clarificationPrompt</code> configured for the
* bot. If the intent requires confirmation before taking the fulfillment action,
* it sends the <code>confirmationPrompt</code>. Another example: Suppose that the
* Lambda function successfully fulfilled the intent, and sent a message to convey
* to the user. Then Amazon Lex sends that message in the response. </p>
*/
inline void ReplaceBody(Aws::IOStream* body) { m_audioStream = Aws::Utils::Stream::ResponseStream(body); }
/**
* <p>The version of the bot that responded to the conversation. You can use this
* information to help determine if one version of a bot is performing better than
* another version.</p> <p>If you have enabled the new natural language
* understanding (NLU) model, you can use this to determine if the improvement is
* due to changes to the bot or changes to the NLU.</p> <p>For more information
* about enabling the new NLU, see the <a
* href="https://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-enableModelImprovements">enableModelImprovements</a>
* parameter of the <code>PutBot</code> operation.</p>
*/
inline const Aws::String& GetBotVersion() const{ return m_botVersion; }
/**
* <p>The version of the bot that responded to the conversation. You can use this
* information to help determine if one version of a bot is performing better than
* another version.</p> <p>If you have enabled the new natural language
* understanding (NLU) model, you can use this to determine if the improvement is
* due to changes to the bot or changes to the NLU.</p> <p>For more information
* about enabling the new NLU, see the <a
* href="https://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-enableModelImprovements">enableModelImprovements</a>
* parameter of the <code>PutBot</code> operation.</p>
*/
inline void SetBotVersion(const Aws::String& value) { m_botVersion = value; }
/**
* <p>The version of the bot that responded to the conversation. You can use this
* information to help determine if one version of a bot is performing better than
* another version.</p> <p>If you have enabled the new natural language
* understanding (NLU) model, you can use this to determine if the improvement is
* due to changes to the bot or changes to the NLU.</p> <p>For more information
* about enabling the new NLU, see the <a
* href="https://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-enableModelImprovements">enableModelImprovements</a>
* parameter of the <code>PutBot</code> operation.</p>
*/
inline void SetBotVersion(Aws::String&& value) { m_botVersion = std::move(value); }
/**
* <p>The version of the bot that responded to the conversation. You can use this
* information to help determine if one version of a bot is performing better than
* another version.</p> <p>If you have enabled the new natural language
* understanding (NLU) model, you can use this to determine if the improvement is
* due to changes to the bot or changes to the NLU.</p> <p>For more information
* about enabling the new NLU, see the <a
* href="https://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-enableModelImprovements">enableModelImprovements</a>
* parameter of the <code>PutBot</code> operation.</p>
*/
inline void SetBotVersion(const char* value) { m_botVersion.assign(value); }
/**
* <p>The version of the bot that responded to the conversation. You can use this
* information to help determine if one version of a bot is performing better than
* another version.</p> <p>If you have enabled the new natural language
* understanding (NLU) model, you can use this to determine if the improvement is
* due to changes to the bot or changes to the NLU.</p> <p>For more information
* about enabling the new NLU, see the <a
* href="https://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-enableModelImprovements">enableModelImprovements</a>
* parameter of the <code>PutBot</code> operation.</p>
*/
inline PostContentResult& WithBotVersion(const Aws::String& value) { SetBotVersion(value); return *this;}
/**
* <p>The version of the bot that responded to the conversation. You can use this
* information to help determine if one version of a bot is performing better than
* another version.</p> <p>If you have enabled the new natural language
* understanding (NLU) model, you can use this to determine if the improvement is
* due to changes to the bot or changes to the NLU.</p> <p>For more information
* about enabling the new NLU, see the <a
* href="https://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-enableModelImprovements">enableModelImprovements</a>
* parameter of the <code>PutBot</code> operation.</p>
*/
inline PostContentResult& WithBotVersion(Aws::String&& value) { SetBotVersion(std::move(value)); return *this;}
/**
* <p>The version of the bot that responded to the conversation. You can use this
* information to help determine if one version of a bot is performing better than
* another version.</p> <p>If you have enabled the new natural language
* understanding (NLU) model, you can use this to determine if the improvement is
* due to changes to the bot or changes to the NLU.</p> <p>For more information
* about enabling the new NLU, see the <a
* href="https://docs.aws.amazon.com/lex/latest/dg/API_PutBot.html#lex-PutBot-request-enableModelImprovements">enableModelImprovements</a>
* parameter of the <code>PutBot</code> operation.</p>
*/
inline PostContentResult& WithBotVersion(const char* value) { SetBotVersion(value); return *this;}
/**
* <p>The unique identifier for the session.</p>
*/
inline const Aws::String& GetSessionId() const{ return m_sessionId; }
/**
* <p>The unique identifier for the session.</p>
*/
inline void SetSessionId(const Aws::String& value) { m_sessionId = value; }
/**
* <p>The unique identifier for the session.</p>
*/
inline void SetSessionId(Aws::String&& value) { m_sessionId = std::move(value); }
/**
* <p>The unique identifier for the session.</p>
*/
inline void SetSessionId(const char* value) { m_sessionId.assign(value); }
/**
* <p>The unique identifier for the session.</p>
*/
inline PostContentResult& WithSessionId(const Aws::String& value) { SetSessionId(value); return *this;}
/**
* <p>The unique identifier for the session.</p>
*/
inline PostContentResult& WithSessionId(Aws::String&& value) { SetSessionId(std::move(value)); return *this;}
/**
* <p>The unique identifier for the session.</p>
*/
inline PostContentResult& WithSessionId(const char* value) { SetSessionId(value); return *this;}
private:
Aws::String m_contentType;
Aws::String m_intentName;
Aws::String m_nluIntentConfidence;
Aws::String m_alternativeIntents;
Aws::String m_slots;
Aws::String m_sessionAttributes;
Aws::String m_sentimentResponse;
Aws::String m_message;
MessageFormatType m_messageFormat;
DialogState m_dialogState;
Aws::String m_slotToElicit;
Aws::String m_inputTranscript;
Aws::Utils::Stream::ResponseStream m_audioStream;
Aws::String m_botVersion;
Aws::String m_sessionId;
};
} // namespace Model
} // namespace LexRuntimeService
} // namespace Aws