/** * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. * SPDX-License-Identifier: Apache-2.0. */ #pragma once #include #include #include #include #include #include namespace Aws { namespace Utils { namespace Json { class JsonValue; class JsonView; } // namespace Json } // namespace Utils namespace SageMaker { namespace Model { /** *

Describes the container, as part of model definition.

See * Also:

AWS * API Reference

*/ class AWS_SAGEMAKER_API ContainerDefinition { public: ContainerDefinition(); ContainerDefinition(Aws::Utils::Json::JsonView jsonValue); ContainerDefinition& operator=(Aws::Utils::Json::JsonView jsonValue); Aws::Utils::Json::JsonValue Jsonize() const; /** *

This parameter is ignored for models that contain only a * PrimaryContainer.

When a ContainerDefinition is * part of an inference pipeline, the value of the parameter uniquely identifies * the container for the purposes of logging and metrics. For information, see Use * Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a * value for this parameter for a ContainerDefinition that is part of * an inference pipeline, a unique name is automatically assigned based on the * position of the ContainerDefinition in the pipeline. If you specify * a value for the ContainerHostName for any * ContainerDefinition that is part of an inference pipeline, you must * specify a value for the ContainerHostName parameter of every * ContainerDefinition in that pipeline.

*/ inline const Aws::String& GetContainerHostname() const{ return m_containerHostname; } /** *

This parameter is ignored for models that contain only a * PrimaryContainer.

When a ContainerDefinition is * part of an inference pipeline, the value of the parameter uniquely identifies * the container for the purposes of logging and metrics. For information, see Use * Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a * value for this parameter for a ContainerDefinition that is part of * an inference pipeline, a unique name is automatically assigned based on the * position of the ContainerDefinition in the pipeline. If you specify * a value for the ContainerHostName for any * ContainerDefinition that is part of an inference pipeline, you must * specify a value for the ContainerHostName parameter of every * ContainerDefinition in that pipeline.

*/ inline bool ContainerHostnameHasBeenSet() const { return m_containerHostnameHasBeenSet; } /** *

This parameter is ignored for models that contain only a * PrimaryContainer.

When a ContainerDefinition is * part of an inference pipeline, the value of the parameter uniquely identifies * the container for the purposes of logging and metrics. For information, see Use * Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a * value for this parameter for a ContainerDefinition that is part of * an inference pipeline, a unique name is automatically assigned based on the * position of the ContainerDefinition in the pipeline. If you specify * a value for the ContainerHostName for any * ContainerDefinition that is part of an inference pipeline, you must * specify a value for the ContainerHostName parameter of every * ContainerDefinition in that pipeline.

*/ inline void SetContainerHostname(const Aws::String& value) { m_containerHostnameHasBeenSet = true; m_containerHostname = value; } /** *

This parameter is ignored for models that contain only a * PrimaryContainer.

When a ContainerDefinition is * part of an inference pipeline, the value of the parameter uniquely identifies * the container for the purposes of logging and metrics. For information, see Use * Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a * value for this parameter for a ContainerDefinition that is part of * an inference pipeline, a unique name is automatically assigned based on the * position of the ContainerDefinition in the pipeline. If you specify * a value for the ContainerHostName for any * ContainerDefinition that is part of an inference pipeline, you must * specify a value for the ContainerHostName parameter of every * ContainerDefinition in that pipeline.

*/ inline void SetContainerHostname(Aws::String&& value) { m_containerHostnameHasBeenSet = true; m_containerHostname = std::move(value); } /** *

This parameter is ignored for models that contain only a * PrimaryContainer.

When a ContainerDefinition is * part of an inference pipeline, the value of the parameter uniquely identifies * the container for the purposes of logging and metrics. For information, see Use * Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a * value for this parameter for a ContainerDefinition that is part of * an inference pipeline, a unique name is automatically assigned based on the * position of the ContainerDefinition in the pipeline. If you specify * a value for the ContainerHostName for any * ContainerDefinition that is part of an inference pipeline, you must * specify a value for the ContainerHostName parameter of every * ContainerDefinition in that pipeline.

*/ inline void SetContainerHostname(const char* value) { m_containerHostnameHasBeenSet = true; m_containerHostname.assign(value); } /** *

This parameter is ignored for models that contain only a * PrimaryContainer.

When a ContainerDefinition is * part of an inference pipeline, the value of the parameter uniquely identifies * the container for the purposes of logging and metrics. For information, see Use * Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a * value for this parameter for a ContainerDefinition that is part of * an inference pipeline, a unique name is automatically assigned based on the * position of the ContainerDefinition in the pipeline. If you specify * a value for the ContainerHostName for any * ContainerDefinition that is part of an inference pipeline, you must * specify a value for the ContainerHostName parameter of every * ContainerDefinition in that pipeline.

*/ inline ContainerDefinition& WithContainerHostname(const Aws::String& value) { SetContainerHostname(value); return *this;} /** *

This parameter is ignored for models that contain only a * PrimaryContainer.

When a ContainerDefinition is * part of an inference pipeline, the value of the parameter uniquely identifies * the container for the purposes of logging and metrics. For information, see Use * Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a * value for this parameter for a ContainerDefinition that is part of * an inference pipeline, a unique name is automatically assigned based on the * position of the ContainerDefinition in the pipeline. If you specify * a value for the ContainerHostName for any * ContainerDefinition that is part of an inference pipeline, you must * specify a value for the ContainerHostName parameter of every * ContainerDefinition in that pipeline.

*/ inline ContainerDefinition& WithContainerHostname(Aws::String&& value) { SetContainerHostname(std::move(value)); return *this;} /** *

This parameter is ignored for models that contain only a * PrimaryContainer.

When a ContainerDefinition is * part of an inference pipeline, the value of the parameter uniquely identifies * the container for the purposes of logging and metrics. For information, see Use * Logs and Metrics to Monitor an Inference Pipeline. If you don't specify a * value for this parameter for a ContainerDefinition that is part of * an inference pipeline, a unique name is automatically assigned based on the * position of the ContainerDefinition in the pipeline. If you specify * a value for the ContainerHostName for any * ContainerDefinition that is part of an inference pipeline, you must * specify a value for the ContainerHostName parameter of every * ContainerDefinition in that pipeline.

*/ inline ContainerDefinition& WithContainerHostname(const char* value) { SetContainerHostname(value); return *this;} /** *

The Amazon EC2 Container Registry (Amazon ECR) path where inference code is * stored. If you are using your own custom algorithm instead of an algorithm * provided by Amazon SageMaker, the inference code must meet Amazon SageMaker * requirements. Amazon SageMaker supports both * registry/repository[:tag] and * registry/repository[@digest] image path formats. For more * information, see Using * Your Own Algorithms with Amazon SageMaker

*/ inline const Aws::String& GetImage() const{ return m_image; } /** *

The Amazon EC2 Container Registry (Amazon ECR) path where inference code is * stored. If you are using your own custom algorithm instead of an algorithm * provided by Amazon SageMaker, the inference code must meet Amazon SageMaker * requirements. Amazon SageMaker supports both * registry/repository[:tag] and * registry/repository[@digest] image path formats. For more * information, see Using * Your Own Algorithms with Amazon SageMaker

*/ inline bool ImageHasBeenSet() const { return m_imageHasBeenSet; } /** *

The Amazon EC2 Container Registry (Amazon ECR) path where inference code is * stored. If you are using your own custom algorithm instead of an algorithm * provided by Amazon SageMaker, the inference code must meet Amazon SageMaker * requirements. Amazon SageMaker supports both * registry/repository[:tag] and * registry/repository[@digest] image path formats. For more * information, see Using * Your Own Algorithms with Amazon SageMaker

*/ inline void SetImage(const Aws::String& value) { m_imageHasBeenSet = true; m_image = value; } /** *

The Amazon EC2 Container Registry (Amazon ECR) path where inference code is * stored. If you are using your own custom algorithm instead of an algorithm * provided by Amazon SageMaker, the inference code must meet Amazon SageMaker * requirements. Amazon SageMaker supports both * registry/repository[:tag] and * registry/repository[@digest] image path formats. For more * information, see Using * Your Own Algorithms with Amazon SageMaker

*/ inline void SetImage(Aws::String&& value) { m_imageHasBeenSet = true; m_image = std::move(value); } /** *

The Amazon EC2 Container Registry (Amazon ECR) path where inference code is * stored. If you are using your own custom algorithm instead of an algorithm * provided by Amazon SageMaker, the inference code must meet Amazon SageMaker * requirements. Amazon SageMaker supports both * registry/repository[:tag] and * registry/repository[@digest] image path formats. For more * information, see Using * Your Own Algorithms with Amazon SageMaker

*/ inline void SetImage(const char* value) { m_imageHasBeenSet = true; m_image.assign(value); } /** *

The Amazon EC2 Container Registry (Amazon ECR) path where inference code is * stored. If you are using your own custom algorithm instead of an algorithm * provided by Amazon SageMaker, the inference code must meet Amazon SageMaker * requirements. Amazon SageMaker supports both * registry/repository[:tag] and * registry/repository[@digest] image path formats. For more * information, see Using * Your Own Algorithms with Amazon SageMaker

*/ inline ContainerDefinition& WithImage(const Aws::String& value) { SetImage(value); return *this;} /** *

The Amazon EC2 Container Registry (Amazon ECR) path where inference code is * stored. If you are using your own custom algorithm instead of an algorithm * provided by Amazon SageMaker, the inference code must meet Amazon SageMaker * requirements. Amazon SageMaker supports both * registry/repository[:tag] and * registry/repository[@digest] image path formats. For more * information, see Using * Your Own Algorithms with Amazon SageMaker

*/ inline ContainerDefinition& WithImage(Aws::String&& value) { SetImage(std::move(value)); return *this;} /** *

The Amazon EC2 Container Registry (Amazon ECR) path where inference code is * stored. If you are using your own custom algorithm instead of an algorithm * provided by Amazon SageMaker, the inference code must meet Amazon SageMaker * requirements. Amazon SageMaker supports both * registry/repository[:tag] and * registry/repository[@digest] image path formats. For more * information, see Using * Your Own Algorithms with Amazon SageMaker

*/ inline ContainerDefinition& WithImage(const char* value) { SetImage(value); return *this;} /** *

Specifies whether the model container is in Amazon ECR or a private Docker * registry in your Amazon Virtual Private Cloud (VPC). For information about * storing containers in a private Docker registry, see Use * a Private Docker Registry for Real-Time Inference Containers

*/ inline const ImageConfig& GetImageConfig() const{ return m_imageConfig; } /** *

Specifies whether the model container is in Amazon ECR or a private Docker * registry in your Amazon Virtual Private Cloud (VPC). For information about * storing containers in a private Docker registry, see Use * a Private Docker Registry for Real-Time Inference Containers

*/ inline bool ImageConfigHasBeenSet() const { return m_imageConfigHasBeenSet; } /** *

Specifies whether the model container is in Amazon ECR or a private Docker * registry in your Amazon Virtual Private Cloud (VPC). For information about * storing containers in a private Docker registry, see Use * a Private Docker Registry for Real-Time Inference Containers

*/ inline void SetImageConfig(const ImageConfig& value) { m_imageConfigHasBeenSet = true; m_imageConfig = value; } /** *

Specifies whether the model container is in Amazon ECR or a private Docker * registry in your Amazon Virtual Private Cloud (VPC). For information about * storing containers in a private Docker registry, see Use * a Private Docker Registry for Real-Time Inference Containers

*/ inline void SetImageConfig(ImageConfig&& value) { m_imageConfigHasBeenSet = true; m_imageConfig = std::move(value); } /** *

Specifies whether the model container is in Amazon ECR or a private Docker * registry in your Amazon Virtual Private Cloud (VPC). For information about * storing containers in a private Docker registry, see Use * a Private Docker Registry for Real-Time Inference Containers

*/ inline ContainerDefinition& WithImageConfig(const ImageConfig& value) { SetImageConfig(value); return *this;} /** *

Specifies whether the model container is in Amazon ECR or a private Docker * registry in your Amazon Virtual Private Cloud (VPC). For information about * storing containers in a private Docker registry, see Use * a Private Docker Registry for Real-Time Inference Containers

*/ inline ContainerDefinition& WithImageConfig(ImageConfig&& value) { SetImageConfig(std::move(value)); return *this;} /** *

Whether the container hosts a single model or multiple models.

*/ inline const ContainerMode& GetMode() const{ return m_mode; } /** *

Whether the container hosts a single model or multiple models.

*/ inline bool ModeHasBeenSet() const { return m_modeHasBeenSet; } /** *

Whether the container hosts a single model or multiple models.

*/ inline void SetMode(const ContainerMode& value) { m_modeHasBeenSet = true; m_mode = value; } /** *

Whether the container hosts a single model or multiple models.

*/ inline void SetMode(ContainerMode&& value) { m_modeHasBeenSet = true; m_mode = std::move(value); } /** *

Whether the container hosts a single model or multiple models.

*/ inline ContainerDefinition& WithMode(const ContainerMode& value) { SetMode(value); return *this;} /** *

Whether the container hosts a single model or multiple models.

*/ inline ContainerDefinition& WithMode(ContainerMode&& value) { SetMode(std::move(value)); return *this;} /** *

The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but * not if you use your own algorithms. For more information on built-in algorithms, * see Common * Parameters.

If you provide a value for this parameter, Amazon * SageMaker uses AWS Security Token Service to download model artifacts from the * S3 path you provide. AWS STS is activated in your IAM user account by default. * If you previously deactivated AWS STS for a region, you need to reactivate AWS * STS for that region. For more information, see Activating * and Deactivating AWS STS in an AWS Region in the AWS Identity and Access * Management User Guide.

If you use a built-in algorithm to * create a model, Amazon SageMaker requires that you provide a S3 path to the * model artifacts in ModelDataUrl.

*/ inline const Aws::String& GetModelDataUrl() const{ return m_modelDataUrl; } /** *

The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but * not if you use your own algorithms. For more information on built-in algorithms, * see Common * Parameters.

If you provide a value for this parameter, Amazon * SageMaker uses AWS Security Token Service to download model artifacts from the * S3 path you provide. AWS STS is activated in your IAM user account by default. * If you previously deactivated AWS STS for a region, you need to reactivate AWS * STS for that region. For more information, see Activating * and Deactivating AWS STS in an AWS Region in the AWS Identity and Access * Management User Guide.

If you use a built-in algorithm to * create a model, Amazon SageMaker requires that you provide a S3 path to the * model artifacts in ModelDataUrl.

*/ inline bool ModelDataUrlHasBeenSet() const { return m_modelDataUrlHasBeenSet; } /** *

The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but * not if you use your own algorithms. For more information on built-in algorithms, * see Common * Parameters.

If you provide a value for this parameter, Amazon * SageMaker uses AWS Security Token Service to download model artifacts from the * S3 path you provide. AWS STS is activated in your IAM user account by default. * If you previously deactivated AWS STS for a region, you need to reactivate AWS * STS for that region. For more information, see Activating * and Deactivating AWS STS in an AWS Region in the AWS Identity and Access * Management User Guide.

If you use a built-in algorithm to * create a model, Amazon SageMaker requires that you provide a S3 path to the * model artifacts in ModelDataUrl.

*/ inline void SetModelDataUrl(const Aws::String& value) { m_modelDataUrlHasBeenSet = true; m_modelDataUrl = value; } /** *

The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but * not if you use your own algorithms. For more information on built-in algorithms, * see Common * Parameters.

If you provide a value for this parameter, Amazon * SageMaker uses AWS Security Token Service to download model artifacts from the * S3 path you provide. AWS STS is activated in your IAM user account by default. * If you previously deactivated AWS STS for a region, you need to reactivate AWS * STS for that region. For more information, see Activating * and Deactivating AWS STS in an AWS Region in the AWS Identity and Access * Management User Guide.

If you use a built-in algorithm to * create a model, Amazon SageMaker requires that you provide a S3 path to the * model artifacts in ModelDataUrl.

*/ inline void SetModelDataUrl(Aws::String&& value) { m_modelDataUrlHasBeenSet = true; m_modelDataUrl = std::move(value); } /** *

The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but * not if you use your own algorithms. For more information on built-in algorithms, * see Common * Parameters.

If you provide a value for this parameter, Amazon * SageMaker uses AWS Security Token Service to download model artifacts from the * S3 path you provide. AWS STS is activated in your IAM user account by default. * If you previously deactivated AWS STS for a region, you need to reactivate AWS * STS for that region. For more information, see Activating * and Deactivating AWS STS in an AWS Region in the AWS Identity and Access * Management User Guide.

If you use a built-in algorithm to * create a model, Amazon SageMaker requires that you provide a S3 path to the * model artifacts in ModelDataUrl.

*/ inline void SetModelDataUrl(const char* value) { m_modelDataUrlHasBeenSet = true; m_modelDataUrl.assign(value); } /** *

The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but * not if you use your own algorithms. For more information on built-in algorithms, * see Common * Parameters.

If you provide a value for this parameter, Amazon * SageMaker uses AWS Security Token Service to download model artifacts from the * S3 path you provide. AWS STS is activated in your IAM user account by default. * If you previously deactivated AWS STS for a region, you need to reactivate AWS * STS for that region. For more information, see Activating * and Deactivating AWS STS in an AWS Region in the AWS Identity and Access * Management User Guide.

If you use a built-in algorithm to * create a model, Amazon SageMaker requires that you provide a S3 path to the * model artifacts in ModelDataUrl.

*/ inline ContainerDefinition& WithModelDataUrl(const Aws::String& value) { SetModelDataUrl(value); return *this;} /** *

The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but * not if you use your own algorithms. For more information on built-in algorithms, * see Common * Parameters.

If you provide a value for this parameter, Amazon * SageMaker uses AWS Security Token Service to download model artifacts from the * S3 path you provide. AWS STS is activated in your IAM user account by default. * If you previously deactivated AWS STS for a region, you need to reactivate AWS * STS for that region. For more information, see Activating * and Deactivating AWS STS in an AWS Region in the AWS Identity and Access * Management User Guide.

If you use a built-in algorithm to * create a model, Amazon SageMaker requires that you provide a S3 path to the * model artifacts in ModelDataUrl.

*/ inline ContainerDefinition& WithModelDataUrl(Aws::String&& value) { SetModelDataUrl(std::move(value)); return *this;} /** *

The S3 path where the model artifacts, which result from model training, are * stored. This path must point to a single gzip compressed tar archive (.tar.gz * suffix). The S3 path is required for Amazon SageMaker built-in algorithms, but * not if you use your own algorithms. For more information on built-in algorithms, * see Common * Parameters.

If you provide a value for this parameter, Amazon * SageMaker uses AWS Security Token Service to download model artifacts from the * S3 path you provide. AWS STS is activated in your IAM user account by default. * If you previously deactivated AWS STS for a region, you need to reactivate AWS * STS for that region. For more information, see Activating * and Deactivating AWS STS in an AWS Region in the AWS Identity and Access * Management User Guide.

If you use a built-in algorithm to * create a model, Amazon SageMaker requires that you provide a S3 path to the * model artifacts in ModelDataUrl.

*/ inline ContainerDefinition& WithModelDataUrl(const char* value) { SetModelDataUrl(value); return *this;} /** *

The environment variables to set in the Docker container. Each key and value * in the Environment string to string map can have length of up to * 1024. We support up to 16 entries in the map.

*/ inline const Aws::Map& GetEnvironment() const{ return m_environment; } /** *

The environment variables to set in the Docker container. Each key and value * in the Environment string to string map can have length of up to * 1024. We support up to 16 entries in the map.

*/ inline bool EnvironmentHasBeenSet() const { return m_environmentHasBeenSet; } /** *

The environment variables to set in the Docker container. Each key and value * in the Environment string to string map can have length of up to * 1024. We support up to 16 entries in the map.

*/ inline void SetEnvironment(const Aws::Map& value) { m_environmentHasBeenSet = true; m_environment = value; } /** *

The environment variables to set in the Docker container. Each key and value * in the Environment string to string map can have length of up to * 1024. We support up to 16 entries in the map.

*/ inline void SetEnvironment(Aws::Map&& value) { m_environmentHasBeenSet = true; m_environment = std::move(value); } /** *

The environment variables to set in the Docker container. Each key and value * in the Environment string to string map can have length of up to * 1024. We support up to 16 entries in the map.

*/ inline ContainerDefinition& WithEnvironment(const Aws::Map& value) { SetEnvironment(value); return *this;} /** *

The environment variables to set in the Docker container. Each key and value * in the Environment string to string map can have length of up to * 1024. We support up to 16 entries in the map.

*/ inline ContainerDefinition& WithEnvironment(Aws::Map&& value) { SetEnvironment(std::move(value)); return *this;} /** *

The environment variables to set in the Docker container. Each key and value * in the Environment string to string map can have length of up to * 1024. We support up to 16 entries in the map.

*/ inline ContainerDefinition& AddEnvironment(const Aws::String& key, const Aws::String& value) { m_environmentHasBeenSet = true; m_environment.emplace(key, value); return *this; } /** *

The environment variables to set in the Docker container. Each key and value * in the Environment string to string map can have length of up to * 1024. We support up to 16 entries in the map.

*/ inline ContainerDefinition& AddEnvironment(Aws::String&& key, const Aws::String& value) { m_environmentHasBeenSet = true; m_environment.emplace(std::move(key), value); return *this; } /** *

The environment variables to set in the Docker container. Each key and value * in the Environment string to string map can have length of up to * 1024. We support up to 16 entries in the map.

*/ inline ContainerDefinition& AddEnvironment(const Aws::String& key, Aws::String&& value) { m_environmentHasBeenSet = true; m_environment.emplace(key, std::move(value)); return *this; } /** *

The environment variables to set in the Docker container. Each key and value * in the Environment string to string map can have length of up to * 1024. We support up to 16 entries in the map.

*/ inline ContainerDefinition& AddEnvironment(Aws::String&& key, Aws::String&& value) { m_environmentHasBeenSet = true; m_environment.emplace(std::move(key), std::move(value)); return *this; } /** *

The environment variables to set in the Docker container. Each key and value * in the Environment string to string map can have length of up to * 1024. We support up to 16 entries in the map.

*/ inline ContainerDefinition& AddEnvironment(const char* key, Aws::String&& value) { m_environmentHasBeenSet = true; m_environment.emplace(key, std::move(value)); return *this; } /** *

The environment variables to set in the Docker container. Each key and value * in the Environment string to string map can have length of up to * 1024. We support up to 16 entries in the map.

*/ inline ContainerDefinition& AddEnvironment(Aws::String&& key, const char* value) { m_environmentHasBeenSet = true; m_environment.emplace(std::move(key), value); return *this; } /** *

The environment variables to set in the Docker container. Each key and value * in the Environment string to string map can have length of up to * 1024. We support up to 16 entries in the map.

*/ inline ContainerDefinition& AddEnvironment(const char* key, const char* value) { m_environmentHasBeenSet = true; m_environment.emplace(key, value); return *this; } /** *

The name or Amazon Resource Name (ARN) of the model package to use to create * the model.

*/ inline const Aws::String& GetModelPackageName() const{ return m_modelPackageName; } /** *

The name or Amazon Resource Name (ARN) of the model package to use to create * the model.

*/ inline bool ModelPackageNameHasBeenSet() const { return m_modelPackageNameHasBeenSet; } /** *

The name or Amazon Resource Name (ARN) of the model package to use to create * the model.

*/ inline void SetModelPackageName(const Aws::String& value) { m_modelPackageNameHasBeenSet = true; m_modelPackageName = value; } /** *

The name or Amazon Resource Name (ARN) of the model package to use to create * the model.

*/ inline void SetModelPackageName(Aws::String&& value) { m_modelPackageNameHasBeenSet = true; m_modelPackageName = std::move(value); } /** *

The name or Amazon Resource Name (ARN) of the model package to use to create * the model.

*/ inline void SetModelPackageName(const char* value) { m_modelPackageNameHasBeenSet = true; m_modelPackageName.assign(value); } /** *

The name or Amazon Resource Name (ARN) of the model package to use to create * the model.

*/ inline ContainerDefinition& WithModelPackageName(const Aws::String& value) { SetModelPackageName(value); return *this;} /** *

The name or Amazon Resource Name (ARN) of the model package to use to create * the model.

*/ inline ContainerDefinition& WithModelPackageName(Aws::String&& value) { SetModelPackageName(std::move(value)); return *this;} /** *

The name or Amazon Resource Name (ARN) of the model package to use to create * the model.

*/ inline ContainerDefinition& WithModelPackageName(const char* value) { SetModelPackageName(value); return *this;} private: Aws::String m_containerHostname; bool m_containerHostnameHasBeenSet; Aws::String m_image; bool m_imageHasBeenSet; ImageConfig m_imageConfig; bool m_imageConfigHasBeenSet; ContainerMode m_mode; bool m_modeHasBeenSet; Aws::String m_modelDataUrl; bool m_modelDataUrlHasBeenSet; Aws::Map m_environment; bool m_environmentHasBeenSet; Aws::String m_modelPackageName; bool m_modelPackageNameHasBeenSet; }; } // namespace Model } // namespace SageMaker } // namespace Aws