This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
pxz-hos-client-cpp-module/support/aws-sdk-cpp-master/aws-cpp-sdk-sagemaker/include/aws/sagemaker/model/HyperParameterTrainingJobDefinition.h

737 lines
34 KiB
C
Raw Normal View History

/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include <aws/sagemaker/SageMaker_EXPORTS.h>
#include <aws/core/utils/memory/stl/AWSString.h>
#include <aws/sagemaker/model/HyperParameterTuningJobObjective.h>
#include <aws/sagemaker/model/ParameterRanges.h>
#include <aws/core/utils/memory/stl/AWSMap.h>
#include <aws/sagemaker/model/HyperParameterAlgorithmSpecification.h>
#include <aws/core/utils/memory/stl/AWSVector.h>
#include <aws/sagemaker/model/VpcConfig.h>
#include <aws/sagemaker/model/OutputDataConfig.h>
#include <aws/sagemaker/model/ResourceConfig.h>
#include <aws/sagemaker/model/StoppingCondition.h>
#include <aws/sagemaker/model/CheckpointConfig.h>
#include <aws/sagemaker/model/Channel.h>
#include <utility>
namespace Aws
{
namespace Utils
{
namespace Json
{
class JsonValue;
class JsonView;
} // namespace Json
} // namespace Utils
namespace SageMaker
{
namespace Model
{
/**
* <p>Defines the training jobs launched by a hyperparameter tuning
* job.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/sagemaker-2017-07-24/HyperParameterTrainingJobDefinition">AWS
* API Reference</a></p>
*/
class AWS_SAGEMAKER_API HyperParameterTrainingJobDefinition
{
public:
HyperParameterTrainingJobDefinition();
HyperParameterTrainingJobDefinition(Aws::Utils::Json::JsonView jsonValue);
HyperParameterTrainingJobDefinition& operator=(Aws::Utils::Json::JsonView jsonValue);
Aws::Utils::Json::JsonValue Jsonize() const;
/**
* <p>The job definition name.</p>
*/
inline const Aws::String& GetDefinitionName() const{ return m_definitionName; }
/**
* <p>The job definition name.</p>
*/
inline bool DefinitionNameHasBeenSet() const { return m_definitionNameHasBeenSet; }
/**
* <p>The job definition name.</p>
*/
inline void SetDefinitionName(const Aws::String& value) { m_definitionNameHasBeenSet = true; m_definitionName = value; }
/**
* <p>The job definition name.</p>
*/
inline void SetDefinitionName(Aws::String&& value) { m_definitionNameHasBeenSet = true; m_definitionName = std::move(value); }
/**
* <p>The job definition name.</p>
*/
inline void SetDefinitionName(const char* value) { m_definitionNameHasBeenSet = true; m_definitionName.assign(value); }
/**
* <p>The job definition name.</p>
*/
inline HyperParameterTrainingJobDefinition& WithDefinitionName(const Aws::String& value) { SetDefinitionName(value); return *this;}
/**
* <p>The job definition name.</p>
*/
inline HyperParameterTrainingJobDefinition& WithDefinitionName(Aws::String&& value) { SetDefinitionName(std::move(value)); return *this;}
/**
* <p>The job definition name.</p>
*/
inline HyperParameterTrainingJobDefinition& WithDefinitionName(const char* value) { SetDefinitionName(value); return *this;}
inline const HyperParameterTuningJobObjective& GetTuningObjective() const{ return m_tuningObjective; }
inline bool TuningObjectiveHasBeenSet() const { return m_tuningObjectiveHasBeenSet; }
inline void SetTuningObjective(const HyperParameterTuningJobObjective& value) { m_tuningObjectiveHasBeenSet = true; m_tuningObjective = value; }
inline void SetTuningObjective(HyperParameterTuningJobObjective&& value) { m_tuningObjectiveHasBeenSet = true; m_tuningObjective = std::move(value); }
inline HyperParameterTrainingJobDefinition& WithTuningObjective(const HyperParameterTuningJobObjective& value) { SetTuningObjective(value); return *this;}
inline HyperParameterTrainingJobDefinition& WithTuningObjective(HyperParameterTuningJobObjective&& value) { SetTuningObjective(std::move(value)); return *this;}
inline const ParameterRanges& GetHyperParameterRanges() const{ return m_hyperParameterRanges; }
inline bool HyperParameterRangesHasBeenSet() const { return m_hyperParameterRangesHasBeenSet; }
inline void SetHyperParameterRanges(const ParameterRanges& value) { m_hyperParameterRangesHasBeenSet = true; m_hyperParameterRanges = value; }
inline void SetHyperParameterRanges(ParameterRanges&& value) { m_hyperParameterRangesHasBeenSet = true; m_hyperParameterRanges = std::move(value); }
inline HyperParameterTrainingJobDefinition& WithHyperParameterRanges(const ParameterRanges& value) { SetHyperParameterRanges(value); return *this;}
inline HyperParameterTrainingJobDefinition& WithHyperParameterRanges(ParameterRanges&& value) { SetHyperParameterRanges(std::move(value)); return *this;}
/**
* <p>Specifies the values of hyperparameters that do not change for the tuning
* job.</p>
*/
inline const Aws::Map<Aws::String, Aws::String>& GetStaticHyperParameters() const{ return m_staticHyperParameters; }
/**
* <p>Specifies the values of hyperparameters that do not change for the tuning
* job.</p>
*/
inline bool StaticHyperParametersHasBeenSet() const { return m_staticHyperParametersHasBeenSet; }
/**
* <p>Specifies the values of hyperparameters that do not change for the tuning
* job.</p>
*/
inline void SetStaticHyperParameters(const Aws::Map<Aws::String, Aws::String>& value) { m_staticHyperParametersHasBeenSet = true; m_staticHyperParameters = value; }
/**
* <p>Specifies the values of hyperparameters that do not change for the tuning
* job.</p>
*/
inline void SetStaticHyperParameters(Aws::Map<Aws::String, Aws::String>&& value) { m_staticHyperParametersHasBeenSet = true; m_staticHyperParameters = std::move(value); }
/**
* <p>Specifies the values of hyperparameters that do not change for the tuning
* job.</p>
*/
inline HyperParameterTrainingJobDefinition& WithStaticHyperParameters(const Aws::Map<Aws::String, Aws::String>& value) { SetStaticHyperParameters(value); return *this;}
/**
* <p>Specifies the values of hyperparameters that do not change for the tuning
* job.</p>
*/
inline HyperParameterTrainingJobDefinition& WithStaticHyperParameters(Aws::Map<Aws::String, Aws::String>&& value) { SetStaticHyperParameters(std::move(value)); return *this;}
/**
* <p>Specifies the values of hyperparameters that do not change for the tuning
* job.</p>
*/
inline HyperParameterTrainingJobDefinition& AddStaticHyperParameters(const Aws::String& key, const Aws::String& value) { m_staticHyperParametersHasBeenSet = true; m_staticHyperParameters.emplace(key, value); return *this; }
/**
* <p>Specifies the values of hyperparameters that do not change for the tuning
* job.</p>
*/
inline HyperParameterTrainingJobDefinition& AddStaticHyperParameters(Aws::String&& key, const Aws::String& value) { m_staticHyperParametersHasBeenSet = true; m_staticHyperParameters.emplace(std::move(key), value); return *this; }
/**
* <p>Specifies the values of hyperparameters that do not change for the tuning
* job.</p>
*/
inline HyperParameterTrainingJobDefinition& AddStaticHyperParameters(const Aws::String& key, Aws::String&& value) { m_staticHyperParametersHasBeenSet = true; m_staticHyperParameters.emplace(key, std::move(value)); return *this; }
/**
* <p>Specifies the values of hyperparameters that do not change for the tuning
* job.</p>
*/
inline HyperParameterTrainingJobDefinition& AddStaticHyperParameters(Aws::String&& key, Aws::String&& value) { m_staticHyperParametersHasBeenSet = true; m_staticHyperParameters.emplace(std::move(key), std::move(value)); return *this; }
/**
* <p>Specifies the values of hyperparameters that do not change for the tuning
* job.</p>
*/
inline HyperParameterTrainingJobDefinition& AddStaticHyperParameters(const char* key, Aws::String&& value) { m_staticHyperParametersHasBeenSet = true; m_staticHyperParameters.emplace(key, std::move(value)); return *this; }
/**
* <p>Specifies the values of hyperparameters that do not change for the tuning
* job.</p>
*/
inline HyperParameterTrainingJobDefinition& AddStaticHyperParameters(Aws::String&& key, const char* value) { m_staticHyperParametersHasBeenSet = true; m_staticHyperParameters.emplace(std::move(key), value); return *this; }
/**
* <p>Specifies the values of hyperparameters that do not change for the tuning
* job.</p>
*/
inline HyperParameterTrainingJobDefinition& AddStaticHyperParameters(const char* key, const char* value) { m_staticHyperParametersHasBeenSet = true; m_staticHyperParameters.emplace(key, value); return *this; }
/**
* <p>The <a>HyperParameterAlgorithmSpecification</a> object that specifies the
* resource algorithm to use for the training jobs that the tuning job
* launches.</p>
*/
inline const HyperParameterAlgorithmSpecification& GetAlgorithmSpecification() const{ return m_algorithmSpecification; }
/**
* <p>The <a>HyperParameterAlgorithmSpecification</a> object that specifies the
* resource algorithm to use for the training jobs that the tuning job
* launches.</p>
*/
inline bool AlgorithmSpecificationHasBeenSet() const { return m_algorithmSpecificationHasBeenSet; }
/**
* <p>The <a>HyperParameterAlgorithmSpecification</a> object that specifies the
* resource algorithm to use for the training jobs that the tuning job
* launches.</p>
*/
inline void SetAlgorithmSpecification(const HyperParameterAlgorithmSpecification& value) { m_algorithmSpecificationHasBeenSet = true; m_algorithmSpecification = value; }
/**
* <p>The <a>HyperParameterAlgorithmSpecification</a> object that specifies the
* resource algorithm to use for the training jobs that the tuning job
* launches.</p>
*/
inline void SetAlgorithmSpecification(HyperParameterAlgorithmSpecification&& value) { m_algorithmSpecificationHasBeenSet = true; m_algorithmSpecification = std::move(value); }
/**
* <p>The <a>HyperParameterAlgorithmSpecification</a> object that specifies the
* resource algorithm to use for the training jobs that the tuning job
* launches.</p>
*/
inline HyperParameterTrainingJobDefinition& WithAlgorithmSpecification(const HyperParameterAlgorithmSpecification& value) { SetAlgorithmSpecification(value); return *this;}
/**
* <p>The <a>HyperParameterAlgorithmSpecification</a> object that specifies the
* resource algorithm to use for the training jobs that the tuning job
* launches.</p>
*/
inline HyperParameterTrainingJobDefinition& WithAlgorithmSpecification(HyperParameterAlgorithmSpecification&& value) { SetAlgorithmSpecification(std::move(value)); return *this;}
/**
* <p>The Amazon Resource Name (ARN) of the IAM role associated with the training
* jobs that the tuning job launches.</p>
*/
inline const Aws::String& GetRoleArn() const{ return m_roleArn; }
/**
* <p>The Amazon Resource Name (ARN) of the IAM role associated with the training
* jobs that the tuning job launches.</p>
*/
inline bool RoleArnHasBeenSet() const { return m_roleArnHasBeenSet; }
/**
* <p>The Amazon Resource Name (ARN) of the IAM role associated with the training
* jobs that the tuning job launches.</p>
*/
inline void SetRoleArn(const Aws::String& value) { m_roleArnHasBeenSet = true; m_roleArn = value; }
/**
* <p>The Amazon Resource Name (ARN) of the IAM role associated with the training
* jobs that the tuning job launches.</p>
*/
inline void SetRoleArn(Aws::String&& value) { m_roleArnHasBeenSet = true; m_roleArn = std::move(value); }
/**
* <p>The Amazon Resource Name (ARN) of the IAM role associated with the training
* jobs that the tuning job launches.</p>
*/
inline void SetRoleArn(const char* value) { m_roleArnHasBeenSet = true; m_roleArn.assign(value); }
/**
* <p>The Amazon Resource Name (ARN) of the IAM role associated with the training
* jobs that the tuning job launches.</p>
*/
inline HyperParameterTrainingJobDefinition& WithRoleArn(const Aws::String& value) { SetRoleArn(value); return *this;}
/**
* <p>The Amazon Resource Name (ARN) of the IAM role associated with the training
* jobs that the tuning job launches.</p>
*/
inline HyperParameterTrainingJobDefinition& WithRoleArn(Aws::String&& value) { SetRoleArn(std::move(value)); return *this;}
/**
* <p>The Amazon Resource Name (ARN) of the IAM role associated with the training
* jobs that the tuning job launches.</p>
*/
inline HyperParameterTrainingJobDefinition& WithRoleArn(const char* value) { SetRoleArn(value); return *this;}
/**
* <p>An array of <a>Channel</a> objects that specify the input for the training
* jobs that the tuning job launches.</p>
*/
inline const Aws::Vector<Channel>& GetInputDataConfig() const{ return m_inputDataConfig; }
/**
* <p>An array of <a>Channel</a> objects that specify the input for the training
* jobs that the tuning job launches.</p>
*/
inline bool InputDataConfigHasBeenSet() const { return m_inputDataConfigHasBeenSet; }
/**
* <p>An array of <a>Channel</a> objects that specify the input for the training
* jobs that the tuning job launches.</p>
*/
inline void SetInputDataConfig(const Aws::Vector<Channel>& value) { m_inputDataConfigHasBeenSet = true; m_inputDataConfig = value; }
/**
* <p>An array of <a>Channel</a> objects that specify the input for the training
* jobs that the tuning job launches.</p>
*/
inline void SetInputDataConfig(Aws::Vector<Channel>&& value) { m_inputDataConfigHasBeenSet = true; m_inputDataConfig = std::move(value); }
/**
* <p>An array of <a>Channel</a> objects that specify the input for the training
* jobs that the tuning job launches.</p>
*/
inline HyperParameterTrainingJobDefinition& WithInputDataConfig(const Aws::Vector<Channel>& value) { SetInputDataConfig(value); return *this;}
/**
* <p>An array of <a>Channel</a> objects that specify the input for the training
* jobs that the tuning job launches.</p>
*/
inline HyperParameterTrainingJobDefinition& WithInputDataConfig(Aws::Vector<Channel>&& value) { SetInputDataConfig(std::move(value)); return *this;}
/**
* <p>An array of <a>Channel</a> objects that specify the input for the training
* jobs that the tuning job launches.</p>
*/
inline HyperParameterTrainingJobDefinition& AddInputDataConfig(const Channel& value) { m_inputDataConfigHasBeenSet = true; m_inputDataConfig.push_back(value); return *this; }
/**
* <p>An array of <a>Channel</a> objects that specify the input for the training
* jobs that the tuning job launches.</p>
*/
inline HyperParameterTrainingJobDefinition& AddInputDataConfig(Channel&& value) { m_inputDataConfigHasBeenSet = true; m_inputDataConfig.push_back(std::move(value)); return *this; }
/**
* <p>The <a>VpcConfig</a> object that specifies the VPC that you want the training
* jobs that this hyperparameter tuning job launches to connect to. Control access
* to and from your training container by configuring the VPC. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect
* Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
*/
inline const VpcConfig& GetVpcConfig() const{ return m_vpcConfig; }
/**
* <p>The <a>VpcConfig</a> object that specifies the VPC that you want the training
* jobs that this hyperparameter tuning job launches to connect to. Control access
* to and from your training container by configuring the VPC. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect
* Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
*/
inline bool VpcConfigHasBeenSet() const { return m_vpcConfigHasBeenSet; }
/**
* <p>The <a>VpcConfig</a> object that specifies the VPC that you want the training
* jobs that this hyperparameter tuning job launches to connect to. Control access
* to and from your training container by configuring the VPC. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect
* Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
*/
inline void SetVpcConfig(const VpcConfig& value) { m_vpcConfigHasBeenSet = true; m_vpcConfig = value; }
/**
* <p>The <a>VpcConfig</a> object that specifies the VPC that you want the training
* jobs that this hyperparameter tuning job launches to connect to. Control access
* to and from your training container by configuring the VPC. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect
* Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
*/
inline void SetVpcConfig(VpcConfig&& value) { m_vpcConfigHasBeenSet = true; m_vpcConfig = std::move(value); }
/**
* <p>The <a>VpcConfig</a> object that specifies the VPC that you want the training
* jobs that this hyperparameter tuning job launches to connect to. Control access
* to and from your training container by configuring the VPC. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect
* Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
*/
inline HyperParameterTrainingJobDefinition& WithVpcConfig(const VpcConfig& value) { SetVpcConfig(value); return *this;}
/**
* <p>The <a>VpcConfig</a> object that specifies the VPC that you want the training
* jobs that this hyperparameter tuning job launches to connect to. Control access
* to and from your training container by configuring the VPC. For more
* information, see <a
* href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect
* Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
*/
inline HyperParameterTrainingJobDefinition& WithVpcConfig(VpcConfig&& value) { SetVpcConfig(std::move(value)); return *this;}
/**
* <p>Specifies the path to the Amazon S3 bucket where you store model artifacts
* from the training jobs that the tuning job launches.</p>
*/
inline const OutputDataConfig& GetOutputDataConfig() const{ return m_outputDataConfig; }
/**
* <p>Specifies the path to the Amazon S3 bucket where you store model artifacts
* from the training jobs that the tuning job launches.</p>
*/
inline bool OutputDataConfigHasBeenSet() const { return m_outputDataConfigHasBeenSet; }
/**
* <p>Specifies the path to the Amazon S3 bucket where you store model artifacts
* from the training jobs that the tuning job launches.</p>
*/
inline void SetOutputDataConfig(const OutputDataConfig& value) { m_outputDataConfigHasBeenSet = true; m_outputDataConfig = value; }
/**
* <p>Specifies the path to the Amazon S3 bucket where you store model artifacts
* from the training jobs that the tuning job launches.</p>
*/
inline void SetOutputDataConfig(OutputDataConfig&& value) { m_outputDataConfigHasBeenSet = true; m_outputDataConfig = std::move(value); }
/**
* <p>Specifies the path to the Amazon S3 bucket where you store model artifacts
* from the training jobs that the tuning job launches.</p>
*/
inline HyperParameterTrainingJobDefinition& WithOutputDataConfig(const OutputDataConfig& value) { SetOutputDataConfig(value); return *this;}
/**
* <p>Specifies the path to the Amazon S3 bucket where you store model artifacts
* from the training jobs that the tuning job launches.</p>
*/
inline HyperParameterTrainingJobDefinition& WithOutputDataConfig(OutputDataConfig&& value) { SetOutputDataConfig(std::move(value)); return *this;}
/**
* <p>The resources, including the compute instances and storage volumes, to use
* for the training jobs that the tuning job launches.</p> <p>Storage volumes store
* model artifacts and incremental states. Training algorithms might also use
* storage volumes for scratch space. If you want Amazon SageMaker to use the
* storage volume to store the training data, choose <code>File</code> as the
* <code>TrainingInputMode</code> in the algorithm specification. For distributed
* training algorithms, specify an instance count greater than 1.</p>
*/
inline const ResourceConfig& GetResourceConfig() const{ return m_resourceConfig; }
/**
* <p>The resources, including the compute instances and storage volumes, to use
* for the training jobs that the tuning job launches.</p> <p>Storage volumes store
* model artifacts and incremental states. Training algorithms might also use
* storage volumes for scratch space. If you want Amazon SageMaker to use the
* storage volume to store the training data, choose <code>File</code> as the
* <code>TrainingInputMode</code> in the algorithm specification. For distributed
* training algorithms, specify an instance count greater than 1.</p>
*/
inline bool ResourceConfigHasBeenSet() const { return m_resourceConfigHasBeenSet; }
/**
* <p>The resources, including the compute instances and storage volumes, to use
* for the training jobs that the tuning job launches.</p> <p>Storage volumes store
* model artifacts and incremental states. Training algorithms might also use
* storage volumes for scratch space. If you want Amazon SageMaker to use the
* storage volume to store the training data, choose <code>File</code> as the
* <code>TrainingInputMode</code> in the algorithm specification. For distributed
* training algorithms, specify an instance count greater than 1.</p>
*/
inline void SetResourceConfig(const ResourceConfig& value) { m_resourceConfigHasBeenSet = true; m_resourceConfig = value; }
/**
* <p>The resources, including the compute instances and storage volumes, to use
* for the training jobs that the tuning job launches.</p> <p>Storage volumes store
* model artifacts and incremental states. Training algorithms might also use
* storage volumes for scratch space. If you want Amazon SageMaker to use the
* storage volume to store the training data, choose <code>File</code> as the
* <code>TrainingInputMode</code> in the algorithm specification. For distributed
* training algorithms, specify an instance count greater than 1.</p>
*/
inline void SetResourceConfig(ResourceConfig&& value) { m_resourceConfigHasBeenSet = true; m_resourceConfig = std::move(value); }
/**
* <p>The resources, including the compute instances and storage volumes, to use
* for the training jobs that the tuning job launches.</p> <p>Storage volumes store
* model artifacts and incremental states. Training algorithms might also use
* storage volumes for scratch space. If you want Amazon SageMaker to use the
* storage volume to store the training data, choose <code>File</code> as the
* <code>TrainingInputMode</code> in the algorithm specification. For distributed
* training algorithms, specify an instance count greater than 1.</p>
*/
inline HyperParameterTrainingJobDefinition& WithResourceConfig(const ResourceConfig& value) { SetResourceConfig(value); return *this;}
/**
* <p>The resources, including the compute instances and storage volumes, to use
* for the training jobs that the tuning job launches.</p> <p>Storage volumes store
* model artifacts and incremental states. Training algorithms might also use
* storage volumes for scratch space. If you want Amazon SageMaker to use the
* storage volume to store the training data, choose <code>File</code> as the
* <code>TrainingInputMode</code> in the algorithm specification. For distributed
* training algorithms, specify an instance count greater than 1.</p>
*/
inline HyperParameterTrainingJobDefinition& WithResourceConfig(ResourceConfig&& value) { SetResourceConfig(std::move(value)); return *this;}
/**
* <p>Specifies a limit to how long a model hyperparameter training job can run. It
* also specifies how long you are willing to wait for a managed spot training job
* to complete. When the job reaches the a limit, Amazon SageMaker ends the
* training job. Use this API to cap model training costs.</p>
*/
inline const StoppingCondition& GetStoppingCondition() const{ return m_stoppingCondition; }
/**
* <p>Specifies a limit to how long a model hyperparameter training job can run. It
* also specifies how long you are willing to wait for a managed spot training job
* to complete. When the job reaches the a limit, Amazon SageMaker ends the
* training job. Use this API to cap model training costs.</p>
*/
inline bool StoppingConditionHasBeenSet() const { return m_stoppingConditionHasBeenSet; }
/**
* <p>Specifies a limit to how long a model hyperparameter training job can run. It
* also specifies how long you are willing to wait for a managed spot training job
* to complete. When the job reaches the a limit, Amazon SageMaker ends the
* training job. Use this API to cap model training costs.</p>
*/
inline void SetStoppingCondition(const StoppingCondition& value) { m_stoppingConditionHasBeenSet = true; m_stoppingCondition = value; }
/**
* <p>Specifies a limit to how long a model hyperparameter training job can run. It
* also specifies how long you are willing to wait for a managed spot training job
* to complete. When the job reaches the a limit, Amazon SageMaker ends the
* training job. Use this API to cap model training costs.</p>
*/
inline void SetStoppingCondition(StoppingCondition&& value) { m_stoppingConditionHasBeenSet = true; m_stoppingCondition = std::move(value); }
/**
* <p>Specifies a limit to how long a model hyperparameter training job can run. It
* also specifies how long you are willing to wait for a managed spot training job
* to complete. When the job reaches the a limit, Amazon SageMaker ends the
* training job. Use this API to cap model training costs.</p>
*/
inline HyperParameterTrainingJobDefinition& WithStoppingCondition(const StoppingCondition& value) { SetStoppingCondition(value); return *this;}
/**
* <p>Specifies a limit to how long a model hyperparameter training job can run. It
* also specifies how long you are willing to wait for a managed spot training job
* to complete. When the job reaches the a limit, Amazon SageMaker ends the
* training job. Use this API to cap model training costs.</p>
*/
inline HyperParameterTrainingJobDefinition& WithStoppingCondition(StoppingCondition&& value) { SetStoppingCondition(std::move(value)); return *this;}
/**
* <p>Isolates the training container. No inbound or outbound network calls can be
* made, except for calls between peers within a training cluster for distributed
* training. If network isolation is used for training jobs that are configured to
* use a VPC, Amazon SageMaker downloads and uploads customer data and model
* artifacts through the specified VPC, but the training container does not have
* network access.</p>
*/
inline bool GetEnableNetworkIsolation() const{ return m_enableNetworkIsolation; }
/**
* <p>Isolates the training container. No inbound or outbound network calls can be
* made, except for calls between peers within a training cluster for distributed
* training. If network isolation is used for training jobs that are configured to
* use a VPC, Amazon SageMaker downloads and uploads customer data and model
* artifacts through the specified VPC, but the training container does not have
* network access.</p>
*/
inline bool EnableNetworkIsolationHasBeenSet() const { return m_enableNetworkIsolationHasBeenSet; }
/**
* <p>Isolates the training container. No inbound or outbound network calls can be
* made, except for calls between peers within a training cluster for distributed
* training. If network isolation is used for training jobs that are configured to
* use a VPC, Amazon SageMaker downloads and uploads customer data and model
* artifacts through the specified VPC, but the training container does not have
* network access.</p>
*/
inline void SetEnableNetworkIsolation(bool value) { m_enableNetworkIsolationHasBeenSet = true; m_enableNetworkIsolation = value; }
/**
* <p>Isolates the training container. No inbound or outbound network calls can be
* made, except for calls between peers within a training cluster for distributed
* training. If network isolation is used for training jobs that are configured to
* use a VPC, Amazon SageMaker downloads and uploads customer data and model
* artifacts through the specified VPC, but the training container does not have
* network access.</p>
*/
inline HyperParameterTrainingJobDefinition& WithEnableNetworkIsolation(bool value) { SetEnableNetworkIsolation(value); return *this;}
/**
* <p>To encrypt all communications between ML compute instances in distributed
* training, choose <code>True</code>. Encryption provides greater security for
* distributed training, but training might take longer. How long it takes depends
* on the amount of communication between compute instances, especially if you use
* a deep learning algorithm in distributed training.</p>
*/
inline bool GetEnableInterContainerTrafficEncryption() const{ return m_enableInterContainerTrafficEncryption; }
/**
* <p>To encrypt all communications between ML compute instances in distributed
* training, choose <code>True</code>. Encryption provides greater security for
* distributed training, but training might take longer. How long it takes depends
* on the amount of communication between compute instances, especially if you use
* a deep learning algorithm in distributed training.</p>
*/
inline bool EnableInterContainerTrafficEncryptionHasBeenSet() const { return m_enableInterContainerTrafficEncryptionHasBeenSet; }
/**
* <p>To encrypt all communications between ML compute instances in distributed
* training, choose <code>True</code>. Encryption provides greater security for
* distributed training, but training might take longer. How long it takes depends
* on the amount of communication between compute instances, especially if you use
* a deep learning algorithm in distributed training.</p>
*/
inline void SetEnableInterContainerTrafficEncryption(bool value) { m_enableInterContainerTrafficEncryptionHasBeenSet = true; m_enableInterContainerTrafficEncryption = value; }
/**
* <p>To encrypt all communications between ML compute instances in distributed
* training, choose <code>True</code>. Encryption provides greater security for
* distributed training, but training might take longer. How long it takes depends
* on the amount of communication between compute instances, especially if you use
* a deep learning algorithm in distributed training.</p>
*/
inline HyperParameterTrainingJobDefinition& WithEnableInterContainerTrafficEncryption(bool value) { SetEnableInterContainerTrafficEncryption(value); return *this;}
/**
* <p>A Boolean indicating whether managed spot training is enabled
* (<code>True</code>) or not (<code>False</code>).</p>
*/
inline bool GetEnableManagedSpotTraining() const{ return m_enableManagedSpotTraining; }
/**
* <p>A Boolean indicating whether managed spot training is enabled
* (<code>True</code>) or not (<code>False</code>).</p>
*/
inline bool EnableManagedSpotTrainingHasBeenSet() const { return m_enableManagedSpotTrainingHasBeenSet; }
/**
* <p>A Boolean indicating whether managed spot training is enabled
* (<code>True</code>) or not (<code>False</code>).</p>
*/
inline void SetEnableManagedSpotTraining(bool value) { m_enableManagedSpotTrainingHasBeenSet = true; m_enableManagedSpotTraining = value; }
/**
* <p>A Boolean indicating whether managed spot training is enabled
* (<code>True</code>) or not (<code>False</code>).</p>
*/
inline HyperParameterTrainingJobDefinition& WithEnableManagedSpotTraining(bool value) { SetEnableManagedSpotTraining(value); return *this;}
inline const CheckpointConfig& GetCheckpointConfig() const{ return m_checkpointConfig; }
inline bool CheckpointConfigHasBeenSet() const { return m_checkpointConfigHasBeenSet; }
inline void SetCheckpointConfig(const CheckpointConfig& value) { m_checkpointConfigHasBeenSet = true; m_checkpointConfig = value; }
inline void SetCheckpointConfig(CheckpointConfig&& value) { m_checkpointConfigHasBeenSet = true; m_checkpointConfig = std::move(value); }
inline HyperParameterTrainingJobDefinition& WithCheckpointConfig(const CheckpointConfig& value) { SetCheckpointConfig(value); return *this;}
inline HyperParameterTrainingJobDefinition& WithCheckpointConfig(CheckpointConfig&& value) { SetCheckpointConfig(std::move(value)); return *this;}
private:
Aws::String m_definitionName;
bool m_definitionNameHasBeenSet;
HyperParameterTuningJobObjective m_tuningObjective;
bool m_tuningObjectiveHasBeenSet;
ParameterRanges m_hyperParameterRanges;
bool m_hyperParameterRangesHasBeenSet;
Aws::Map<Aws::String, Aws::String> m_staticHyperParameters;
bool m_staticHyperParametersHasBeenSet;
HyperParameterAlgorithmSpecification m_algorithmSpecification;
bool m_algorithmSpecificationHasBeenSet;
Aws::String m_roleArn;
bool m_roleArnHasBeenSet;
Aws::Vector<Channel> m_inputDataConfig;
bool m_inputDataConfigHasBeenSet;
VpcConfig m_vpcConfig;
bool m_vpcConfigHasBeenSet;
OutputDataConfig m_outputDataConfig;
bool m_outputDataConfigHasBeenSet;
ResourceConfig m_resourceConfig;
bool m_resourceConfigHasBeenSet;
StoppingCondition m_stoppingCondition;
bool m_stoppingConditionHasBeenSet;
bool m_enableNetworkIsolation;
bool m_enableNetworkIsolationHasBeenSet;
bool m_enableInterContainerTrafficEncryption;
bool m_enableInterContainerTrafficEncryptionHasBeenSet;
bool m_enableManagedSpotTraining;
bool m_enableManagedSpotTrainingHasBeenSet;
CheckpointConfig m_checkpointConfig;
bool m_checkpointConfigHasBeenSet;
};
} // namespace Model
} // namespace SageMaker
} // namespace Aws