This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files

1254 lines
67 KiB
C
Raw Normal View History

/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#pragma once
#include <aws/machinelearning/MachineLearning_EXPORTS.h>
#include <aws/core/utils/memory/stl/AWSString.h>
#include <aws/core/utils/DateTime.h>
#include <aws/machinelearning/model/EntityStatus.h>
#include <aws/machinelearning/model/RealtimeEndpointInfo.h>
#include <aws/core/utils/memory/stl/AWSMap.h>
#include <aws/machinelearning/model/Algorithm.h>
#include <aws/machinelearning/model/MLModelType.h>
#include <utility>
namespace Aws
{
namespace Utils
{
namespace Json
{
class JsonValue;
class JsonView;
} // namespace Json
} // namespace Utils
namespace MachineLearning
{
namespace Model
{
/**
* <p> Represents the output of a <code>GetMLModel</code> operation. </p> <p>The
* content consists of the detailed metadata and the current status of the
* <code>MLModel</code>.</p><p><h3>See Also:</h3> <a
* href="http://docs.aws.amazon.com/goto/WebAPI/machinelearning-2014-12-12/MLModel">AWS
* API Reference</a></p>
*/
class AWS_MACHINELEARNING_API MLModel
{
public:
MLModel();
MLModel(Aws::Utils::Json::JsonView jsonValue);
MLModel& operator=(Aws::Utils::Json::JsonView jsonValue);
Aws::Utils::Json::JsonValue Jsonize() const;
/**
* <p>The ID assigned to the <code>MLModel</code> at creation.</p>
*/
inline const Aws::String& GetMLModelId() const{ return m_mLModelId; }
/**
* <p>The ID assigned to the <code>MLModel</code> at creation.</p>
*/
inline bool MLModelIdHasBeenSet() const { return m_mLModelIdHasBeenSet; }
/**
* <p>The ID assigned to the <code>MLModel</code> at creation.</p>
*/
inline void SetMLModelId(const Aws::String& value) { m_mLModelIdHasBeenSet = true; m_mLModelId = value; }
/**
* <p>The ID assigned to the <code>MLModel</code> at creation.</p>
*/
inline void SetMLModelId(Aws::String&& value) { m_mLModelIdHasBeenSet = true; m_mLModelId = std::move(value); }
/**
* <p>The ID assigned to the <code>MLModel</code> at creation.</p>
*/
inline void SetMLModelId(const char* value) { m_mLModelIdHasBeenSet = true; m_mLModelId.assign(value); }
/**
* <p>The ID assigned to the <code>MLModel</code> at creation.</p>
*/
inline MLModel& WithMLModelId(const Aws::String& value) { SetMLModelId(value); return *this;}
/**
* <p>The ID assigned to the <code>MLModel</code> at creation.</p>
*/
inline MLModel& WithMLModelId(Aws::String&& value) { SetMLModelId(std::move(value)); return *this;}
/**
* <p>The ID assigned to the <code>MLModel</code> at creation.</p>
*/
inline MLModel& WithMLModelId(const char* value) { SetMLModelId(value); return *this;}
/**
* <p>The ID of the training <code>DataSource</code>. The
* <code>CreateMLModel</code> operation uses the
* <code>TrainingDataSourceId</code>.</p>
*/
inline const Aws::String& GetTrainingDataSourceId() const{ return m_trainingDataSourceId; }
/**
* <p>The ID of the training <code>DataSource</code>. The
* <code>CreateMLModel</code> operation uses the
* <code>TrainingDataSourceId</code>.</p>
*/
inline bool TrainingDataSourceIdHasBeenSet() const { return m_trainingDataSourceIdHasBeenSet; }
/**
* <p>The ID of the training <code>DataSource</code>. The
* <code>CreateMLModel</code> operation uses the
* <code>TrainingDataSourceId</code>.</p>
*/
inline void SetTrainingDataSourceId(const Aws::String& value) { m_trainingDataSourceIdHasBeenSet = true; m_trainingDataSourceId = value; }
/**
* <p>The ID of the training <code>DataSource</code>. The
* <code>CreateMLModel</code> operation uses the
* <code>TrainingDataSourceId</code>.</p>
*/
inline void SetTrainingDataSourceId(Aws::String&& value) { m_trainingDataSourceIdHasBeenSet = true; m_trainingDataSourceId = std::move(value); }
/**
* <p>The ID of the training <code>DataSource</code>. The
* <code>CreateMLModel</code> operation uses the
* <code>TrainingDataSourceId</code>.</p>
*/
inline void SetTrainingDataSourceId(const char* value) { m_trainingDataSourceIdHasBeenSet = true; m_trainingDataSourceId.assign(value); }
/**
* <p>The ID of the training <code>DataSource</code>. The
* <code>CreateMLModel</code> operation uses the
* <code>TrainingDataSourceId</code>.</p>
*/
inline MLModel& WithTrainingDataSourceId(const Aws::String& value) { SetTrainingDataSourceId(value); return *this;}
/**
* <p>The ID of the training <code>DataSource</code>. The
* <code>CreateMLModel</code> operation uses the
* <code>TrainingDataSourceId</code>.</p>
*/
inline MLModel& WithTrainingDataSourceId(Aws::String&& value) { SetTrainingDataSourceId(std::move(value)); return *this;}
/**
* <p>The ID of the training <code>DataSource</code>. The
* <code>CreateMLModel</code> operation uses the
* <code>TrainingDataSourceId</code>.</p>
*/
inline MLModel& WithTrainingDataSourceId(const char* value) { SetTrainingDataSourceId(value); return *this;}
/**
* <p>The AWS user account from which the <code>MLModel</code> was created. The
* account type can be either an AWS root account or an AWS Identity and Access
* Management (IAM) user account.</p>
*/
inline const Aws::String& GetCreatedByIamUser() const{ return m_createdByIamUser; }
/**
* <p>The AWS user account from which the <code>MLModel</code> was created. The
* account type can be either an AWS root account or an AWS Identity and Access
* Management (IAM) user account.</p>
*/
inline bool CreatedByIamUserHasBeenSet() const { return m_createdByIamUserHasBeenSet; }
/**
* <p>The AWS user account from which the <code>MLModel</code> was created. The
* account type can be either an AWS root account or an AWS Identity and Access
* Management (IAM) user account.</p>
*/
inline void SetCreatedByIamUser(const Aws::String& value) { m_createdByIamUserHasBeenSet = true; m_createdByIamUser = value; }
/**
* <p>The AWS user account from which the <code>MLModel</code> was created. The
* account type can be either an AWS root account or an AWS Identity and Access
* Management (IAM) user account.</p>
*/
inline void SetCreatedByIamUser(Aws::String&& value) { m_createdByIamUserHasBeenSet = true; m_createdByIamUser = std::move(value); }
/**
* <p>The AWS user account from which the <code>MLModel</code> was created. The
* account type can be either an AWS root account or an AWS Identity and Access
* Management (IAM) user account.</p>
*/
inline void SetCreatedByIamUser(const char* value) { m_createdByIamUserHasBeenSet = true; m_createdByIamUser.assign(value); }
/**
* <p>The AWS user account from which the <code>MLModel</code> was created. The
* account type can be either an AWS root account or an AWS Identity and Access
* Management (IAM) user account.</p>
*/
inline MLModel& WithCreatedByIamUser(const Aws::String& value) { SetCreatedByIamUser(value); return *this;}
/**
* <p>The AWS user account from which the <code>MLModel</code> was created. The
* account type can be either an AWS root account or an AWS Identity and Access
* Management (IAM) user account.</p>
*/
inline MLModel& WithCreatedByIamUser(Aws::String&& value) { SetCreatedByIamUser(std::move(value)); return *this;}
/**
* <p>The AWS user account from which the <code>MLModel</code> was created. The
* account type can be either an AWS root account or an AWS Identity and Access
* Management (IAM) user account.</p>
*/
inline MLModel& WithCreatedByIamUser(const char* value) { SetCreatedByIamUser(value); return *this;}
/**
* <p>The time that the <code>MLModel</code> was created. The time is expressed in
* epoch time.</p>
*/
inline const Aws::Utils::DateTime& GetCreatedAt() const{ return m_createdAt; }
/**
* <p>The time that the <code>MLModel</code> was created. The time is expressed in
* epoch time.</p>
*/
inline bool CreatedAtHasBeenSet() const { return m_createdAtHasBeenSet; }
/**
* <p>The time that the <code>MLModel</code> was created. The time is expressed in
* epoch time.</p>
*/
inline void SetCreatedAt(const Aws::Utils::DateTime& value) { m_createdAtHasBeenSet = true; m_createdAt = value; }
/**
* <p>The time that the <code>MLModel</code> was created. The time is expressed in
* epoch time.</p>
*/
inline void SetCreatedAt(Aws::Utils::DateTime&& value) { m_createdAtHasBeenSet = true; m_createdAt = std::move(value); }
/**
* <p>The time that the <code>MLModel</code> was created. The time is expressed in
* epoch time.</p>
*/
inline MLModel& WithCreatedAt(const Aws::Utils::DateTime& value) { SetCreatedAt(value); return *this;}
/**
* <p>The time that the <code>MLModel</code> was created. The time is expressed in
* epoch time.</p>
*/
inline MLModel& WithCreatedAt(Aws::Utils::DateTime&& value) { SetCreatedAt(std::move(value)); return *this;}
/**
* <p>The time of the most recent edit to the <code>MLModel</code>. The time is
* expressed in epoch time.</p>
*/
inline const Aws::Utils::DateTime& GetLastUpdatedAt() const{ return m_lastUpdatedAt; }
/**
* <p>The time of the most recent edit to the <code>MLModel</code>. The time is
* expressed in epoch time.</p>
*/
inline bool LastUpdatedAtHasBeenSet() const { return m_lastUpdatedAtHasBeenSet; }
/**
* <p>The time of the most recent edit to the <code>MLModel</code>. The time is
* expressed in epoch time.</p>
*/
inline void SetLastUpdatedAt(const Aws::Utils::DateTime& value) { m_lastUpdatedAtHasBeenSet = true; m_lastUpdatedAt = value; }
/**
* <p>The time of the most recent edit to the <code>MLModel</code>. The time is
* expressed in epoch time.</p>
*/
inline void SetLastUpdatedAt(Aws::Utils::DateTime&& value) { m_lastUpdatedAtHasBeenSet = true; m_lastUpdatedAt = std::move(value); }
/**
* <p>The time of the most recent edit to the <code>MLModel</code>. The time is
* expressed in epoch time.</p>
*/
inline MLModel& WithLastUpdatedAt(const Aws::Utils::DateTime& value) { SetLastUpdatedAt(value); return *this;}
/**
* <p>The time of the most recent edit to the <code>MLModel</code>. The time is
* expressed in epoch time.</p>
*/
inline MLModel& WithLastUpdatedAt(Aws::Utils::DateTime&& value) { SetLastUpdatedAt(std::move(value)); return *this;}
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline const Aws::String& GetName() const{ return m_name; }
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline bool NameHasBeenSet() const { return m_nameHasBeenSet; }
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline void SetName(const Aws::String& value) { m_nameHasBeenSet = true; m_name = value; }
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline void SetName(Aws::String&& value) { m_nameHasBeenSet = true; m_name = std::move(value); }
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline void SetName(const char* value) { m_nameHasBeenSet = true; m_name.assign(value); }
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline MLModel& WithName(const Aws::String& value) { SetName(value); return *this;}
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline MLModel& WithName(Aws::String&& value) { SetName(std::move(value)); return *this;}
/**
* <p>A user-supplied name or description of the <code>MLModel</code>.</p>
*/
inline MLModel& WithName(const char* value) { SetName(value); return *this;}
/**
* <p>The current status of an <code>MLModel</code>. This element can have one of
* the following values: </p> <ul> <li> <code>PENDING</code> - Amazon Machine
* Learning (Amazon ML) submitted a request to create an <code>MLModel</code>.</li>
* <li> <code>INPROGRESS</code> - The creation process is underway.</li> <li>
* <code>FAILED</code> - The request to create an <code>MLModel</code> didn't run
* to completion. The model isn't usable.</li> <li> <code>COMPLETED</code> - The
* creation process completed successfully.</li> <li> <code>DELETED</code> - The
* <code>MLModel</code> is marked as deleted. It isn't usable.</li> </ul>
*/
inline const EntityStatus& GetStatus() const{ return m_status; }
/**
* <p>The current status of an <code>MLModel</code>. This element can have one of
* the following values: </p> <ul> <li> <code>PENDING</code> - Amazon Machine
* Learning (Amazon ML) submitted a request to create an <code>MLModel</code>.</li>
* <li> <code>INPROGRESS</code> - The creation process is underway.</li> <li>
* <code>FAILED</code> - The request to create an <code>MLModel</code> didn't run
* to completion. The model isn't usable.</li> <li> <code>COMPLETED</code> - The
* creation process completed successfully.</li> <li> <code>DELETED</code> - The
* <code>MLModel</code> is marked as deleted. It isn't usable.</li> </ul>
*/
inline bool StatusHasBeenSet() const { return m_statusHasBeenSet; }
/**
* <p>The current status of an <code>MLModel</code>. This element can have one of
* the following values: </p> <ul> <li> <code>PENDING</code> - Amazon Machine
* Learning (Amazon ML) submitted a request to create an <code>MLModel</code>.</li>
* <li> <code>INPROGRESS</code> - The creation process is underway.</li> <li>
* <code>FAILED</code> - The request to create an <code>MLModel</code> didn't run
* to completion. The model isn't usable.</li> <li> <code>COMPLETED</code> - The
* creation process completed successfully.</li> <li> <code>DELETED</code> - The
* <code>MLModel</code> is marked as deleted. It isn't usable.</li> </ul>
*/
inline void SetStatus(const EntityStatus& value) { m_statusHasBeenSet = true; m_status = value; }
/**
* <p>The current status of an <code>MLModel</code>. This element can have one of
* the following values: </p> <ul> <li> <code>PENDING</code> - Amazon Machine
* Learning (Amazon ML) submitted a request to create an <code>MLModel</code>.</li>
* <li> <code>INPROGRESS</code> - The creation process is underway.</li> <li>
* <code>FAILED</code> - The request to create an <code>MLModel</code> didn't run
* to completion. The model isn't usable.</li> <li> <code>COMPLETED</code> - The
* creation process completed successfully.</li> <li> <code>DELETED</code> - The
* <code>MLModel</code> is marked as deleted. It isn't usable.</li> </ul>
*/
inline void SetStatus(EntityStatus&& value) { m_statusHasBeenSet = true; m_status = std::move(value); }
/**
* <p>The current status of an <code>MLModel</code>. This element can have one of
* the following values: </p> <ul> <li> <code>PENDING</code> - Amazon Machine
* Learning (Amazon ML) submitted a request to create an <code>MLModel</code>.</li>
* <li> <code>INPROGRESS</code> - The creation process is underway.</li> <li>
* <code>FAILED</code> - The request to create an <code>MLModel</code> didn't run
* to completion. The model isn't usable.</li> <li> <code>COMPLETED</code> - The
* creation process completed successfully.</li> <li> <code>DELETED</code> - The
* <code>MLModel</code> is marked as deleted. It isn't usable.</li> </ul>
*/
inline MLModel& WithStatus(const EntityStatus& value) { SetStatus(value); return *this;}
/**
* <p>The current status of an <code>MLModel</code>. This element can have one of
* the following values: </p> <ul> <li> <code>PENDING</code> - Amazon Machine
* Learning (Amazon ML) submitted a request to create an <code>MLModel</code>.</li>
* <li> <code>INPROGRESS</code> - The creation process is underway.</li> <li>
* <code>FAILED</code> - The request to create an <code>MLModel</code> didn't run
* to completion. The model isn't usable.</li> <li> <code>COMPLETED</code> - The
* creation process completed successfully.</li> <li> <code>DELETED</code> - The
* <code>MLModel</code> is marked as deleted. It isn't usable.</li> </ul>
*/
inline MLModel& WithStatus(EntityStatus&& value) { SetStatus(std::move(value)); return *this;}
inline long long GetSizeInBytes() const{ return m_sizeInBytes; }
inline bool SizeInBytesHasBeenSet() const { return m_sizeInBytesHasBeenSet; }
inline void SetSizeInBytes(long long value) { m_sizeInBytesHasBeenSet = true; m_sizeInBytes = value; }
inline MLModel& WithSizeInBytes(long long value) { SetSizeInBytes(value); return *this;}
/**
* <p>The current endpoint of the <code>MLModel</code>.</p>
*/
inline const RealtimeEndpointInfo& GetEndpointInfo() const{ return m_endpointInfo; }
/**
* <p>The current endpoint of the <code>MLModel</code>.</p>
*/
inline bool EndpointInfoHasBeenSet() const { return m_endpointInfoHasBeenSet; }
/**
* <p>The current endpoint of the <code>MLModel</code>.</p>
*/
inline void SetEndpointInfo(const RealtimeEndpointInfo& value) { m_endpointInfoHasBeenSet = true; m_endpointInfo = value; }
/**
* <p>The current endpoint of the <code>MLModel</code>.</p>
*/
inline void SetEndpointInfo(RealtimeEndpointInfo&& value) { m_endpointInfoHasBeenSet = true; m_endpointInfo = std::move(value); }
/**
* <p>The current endpoint of the <code>MLModel</code>.</p>
*/
inline MLModel& WithEndpointInfo(const RealtimeEndpointInfo& value) { SetEndpointInfo(value); return *this;}
/**
* <p>The current endpoint of the <code>MLModel</code>.</p>
*/
inline MLModel& WithEndpointInfo(RealtimeEndpointInfo&& value) { SetEndpointInfo(std::move(value)); return *this;}
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li>
* <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training
* data. Shuffling the data improves a model's ability to find the optimal solution
* for a variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>.</p></li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm, which controls overfitting the data by penalizing large coefficients. This
* parameter tends to drive coefficients to zero, resulting in sparse feature set.
* If you use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm, which controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline const Aws::Map<Aws::String, Aws::String>& GetTrainingParameters() const{ return m_trainingParameters; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li>
* <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training
* data. Shuffling the data improves a model's ability to find the optimal solution
* for a variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>.</p></li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm, which controls overfitting the data by penalizing large coefficients. This
* parameter tends to drive coefficients to zero, resulting in sparse feature set.
* If you use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm, which controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline bool TrainingParametersHasBeenSet() const { return m_trainingParametersHasBeenSet; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li>
* <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training
* data. Shuffling the data improves a model's ability to find the optimal solution
* for a variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>.</p></li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm, which controls overfitting the data by penalizing large coefficients. This
* parameter tends to drive coefficients to zero, resulting in sparse feature set.
* If you use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm, which controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline void SetTrainingParameters(const Aws::Map<Aws::String, Aws::String>& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters = value; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li>
* <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training
* data. Shuffling the data improves a model's ability to find the optimal solution
* for a variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>.</p></li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm, which controls overfitting the data by penalizing large coefficients. This
* parameter tends to drive coefficients to zero, resulting in sparse feature set.
* If you use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm, which controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline void SetTrainingParameters(Aws::Map<Aws::String, Aws::String>&& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters = std::move(value); }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li>
* <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training
* data. Shuffling the data improves a model's ability to find the optimal solution
* for a variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>.</p></li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm, which controls overfitting the data by penalizing large coefficients. This
* parameter tends to drive coefficients to zero, resulting in sparse feature set.
* If you use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm, which controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline MLModel& WithTrainingParameters(const Aws::Map<Aws::String, Aws::String>& value) { SetTrainingParameters(value); return *this;}
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li>
* <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training
* data. Shuffling the data improves a model's ability to find the optimal solution
* for a variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>.</p></li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm, which controls overfitting the data by penalizing large coefficients. This
* parameter tends to drive coefficients to zero, resulting in sparse feature set.
* If you use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm, which controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline MLModel& WithTrainingParameters(Aws::Map<Aws::String, Aws::String>&& value) { SetTrainingParameters(std::move(value)); return *this;}
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li>
* <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training
* data. Shuffling the data improves a model's ability to find the optimal solution
* for a variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>.</p></li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm, which controls overfitting the data by penalizing large coefficients. This
* parameter tends to drive coefficients to zero, resulting in sparse feature set.
* If you use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm, which controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline MLModel& AddTrainingParameters(const Aws::String& key, const Aws::String& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(key, value); return *this; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li>
* <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training
* data. Shuffling the data improves a model's ability to find the optimal solution
* for a variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>.</p></li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm, which controls overfitting the data by penalizing large coefficients. This
* parameter tends to drive coefficients to zero, resulting in sparse feature set.
* If you use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm, which controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline MLModel& AddTrainingParameters(Aws::String&& key, const Aws::String& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(std::move(key), value); return *this; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li>
* <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training
* data. Shuffling the data improves a model's ability to find the optimal solution
* for a variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>.</p></li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm, which controls overfitting the data by penalizing large coefficients. This
* parameter tends to drive coefficients to zero, resulting in sparse feature set.
* If you use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm, which controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline MLModel& AddTrainingParameters(const Aws::String& key, Aws::String&& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(key, std::move(value)); return *this; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li>
* <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training
* data. Shuffling the data improves a model's ability to find the optimal solution
* for a variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>.</p></li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm, which controls overfitting the data by penalizing large coefficients. This
* parameter tends to drive coefficients to zero, resulting in sparse feature set.
* If you use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm, which controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline MLModel& AddTrainingParameters(Aws::String&& key, Aws::String&& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(std::move(key), std::move(value)); return *this; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li>
* <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training
* data. Shuffling the data improves a model's ability to find the optimal solution
* for a variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>.</p></li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm, which controls overfitting the data by penalizing large coefficients. This
* parameter tends to drive coefficients to zero, resulting in sparse feature set.
* If you use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm, which controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline MLModel& AddTrainingParameters(const char* key, Aws::String&& value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(key, std::move(value)); return *this; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li>
* <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training
* data. Shuffling the data improves a model's ability to find the optimal solution
* for a variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>.</p></li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm, which controls overfitting the data by penalizing large coefficients. This
* parameter tends to drive coefficients to zero, resulting in sparse feature set.
* If you use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm, which controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline MLModel& AddTrainingParameters(Aws::String&& key, const char* value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(std::move(key), value); return *this; }
/**
* <p>A list of the training parameters in the <code>MLModel</code>. The list is
* implemented as a map of key-value pairs.</p> <p>The following is the current set
* of training parameters: </p> <ul> <li> <p><code>sgd.maxMLModelSizeInBytes</code>
* - The maximum allowed size of the model. Depending on the input data, the size
* of the model might affect its performance.</p> <p> The value is an integer that
* ranges from <code>100000</code> to <code>2147483648</code>. The default value is
* <code>33554432</code>.</p> </li> <li><p><code>sgd.maxPasses</code> - The number
* of times that the training process traverses the observations to build the
* <code>MLModel</code>. The value is an integer that ranges from <code>1</code> to
* <code>10000</code>. The default value is <code>10</code>.</p></li>
* <li><p><code>sgd.shuffleType</code> - Whether Amazon ML shuffles the training
* data. Shuffling the data improves a model's ability to find the optimal solution
* for a variety of data types. The valid values are <code>auto</code> and
* <code>none</code>. The default value is <code>none</code>.</p></li> <li>
* <p><code>sgd.l1RegularizationAmount</code> - The coefficient regularization L1
* norm, which controls overfitting the data by penalizing large coefficients. This
* parameter tends to drive coefficients to zero, resulting in sparse feature set.
* If you use this parameter, start by specifying a small value, such as
* <code>1.0E-08</code>.</p> <p>The value is a double that ranges from
* <code>0</code> to <code>MAX_DOUBLE</code>. The default is to not use L1
* normalization. This parameter can't be used when <code>L2</code> is specified.
* Use this parameter sparingly.</p> </li> <li>
* <p><code>sgd.l2RegularizationAmount</code> - The coefficient regularization L2
* norm, which controls overfitting the data by penalizing large coefficients. This
* tends to drive coefficients to small, nonzero values. If you use this parameter,
* start by specifying a small value, such as <code>1.0E-08</code>.</p> <p>The
* value is a double that ranges from <code>0</code> to <code>MAX_DOUBLE</code>.
* The default is to not use L2 normalization. This parameter can't be used when
* <code>L1</code> is specified. Use this parameter sparingly.</p> </li> </ul>
*/
inline MLModel& AddTrainingParameters(const char* key, const char* value) { m_trainingParametersHasBeenSet = true; m_trainingParameters.emplace(key, value); return *this; }
/**
* <p>The location of the data file or directory in Amazon Simple Storage Service
* (Amazon S3).</p>
*/
inline const Aws::String& GetInputDataLocationS3() const{ return m_inputDataLocationS3; }
/**
* <p>The location of the data file or directory in Amazon Simple Storage Service
* (Amazon S3).</p>
*/
inline bool InputDataLocationS3HasBeenSet() const { return m_inputDataLocationS3HasBeenSet; }
/**
* <p>The location of the data file or directory in Amazon Simple Storage Service
* (Amazon S3).</p>
*/
inline void SetInputDataLocationS3(const Aws::String& value) { m_inputDataLocationS3HasBeenSet = true; m_inputDataLocationS3 = value; }
/**
* <p>The location of the data file or directory in Amazon Simple Storage Service
* (Amazon S3).</p>
*/
inline void SetInputDataLocationS3(Aws::String&& value) { m_inputDataLocationS3HasBeenSet = true; m_inputDataLocationS3 = std::move(value); }
/**
* <p>The location of the data file or directory in Amazon Simple Storage Service
* (Amazon S3).</p>
*/
inline void SetInputDataLocationS3(const char* value) { m_inputDataLocationS3HasBeenSet = true; m_inputDataLocationS3.assign(value); }
/**
* <p>The location of the data file or directory in Amazon Simple Storage Service
* (Amazon S3).</p>
*/
inline MLModel& WithInputDataLocationS3(const Aws::String& value) { SetInputDataLocationS3(value); return *this;}
/**
* <p>The location of the data file or directory in Amazon Simple Storage Service
* (Amazon S3).</p>
*/
inline MLModel& WithInputDataLocationS3(Aws::String&& value) { SetInputDataLocationS3(std::move(value)); return *this;}
/**
* <p>The location of the data file or directory in Amazon Simple Storage Service
* (Amazon S3).</p>
*/
inline MLModel& WithInputDataLocationS3(const char* value) { SetInputDataLocationS3(value); return *this;}
/**
* <p>The algorithm used to train the <code>MLModel</code>. The following algorithm
* is supported:</p> <ul> <li> <code>SGD</code> -- Stochastic gradient descent. The
* goal of <code>SGD</code> is to minimize the gradient of the loss function. </li>
* </ul>
*/
inline const Algorithm& GetAlgorithm() const{ return m_algorithm; }
/**
* <p>The algorithm used to train the <code>MLModel</code>. The following algorithm
* is supported:</p> <ul> <li> <code>SGD</code> -- Stochastic gradient descent. The
* goal of <code>SGD</code> is to minimize the gradient of the loss function. </li>
* </ul>
*/
inline bool AlgorithmHasBeenSet() const { return m_algorithmHasBeenSet; }
/**
* <p>The algorithm used to train the <code>MLModel</code>. The following algorithm
* is supported:</p> <ul> <li> <code>SGD</code> -- Stochastic gradient descent. The
* goal of <code>SGD</code> is to minimize the gradient of the loss function. </li>
* </ul>
*/
inline void SetAlgorithm(const Algorithm& value) { m_algorithmHasBeenSet = true; m_algorithm = value; }
/**
* <p>The algorithm used to train the <code>MLModel</code>. The following algorithm
* is supported:</p> <ul> <li> <code>SGD</code> -- Stochastic gradient descent. The
* goal of <code>SGD</code> is to minimize the gradient of the loss function. </li>
* </ul>
*/
inline void SetAlgorithm(Algorithm&& value) { m_algorithmHasBeenSet = true; m_algorithm = std::move(value); }
/**
* <p>The algorithm used to train the <code>MLModel</code>. The following algorithm
* is supported:</p> <ul> <li> <code>SGD</code> -- Stochastic gradient descent. The
* goal of <code>SGD</code> is to minimize the gradient of the loss function. </li>
* </ul>
*/
inline MLModel& WithAlgorithm(const Algorithm& value) { SetAlgorithm(value); return *this;}
/**
* <p>The algorithm used to train the <code>MLModel</code>. The following algorithm
* is supported:</p> <ul> <li> <code>SGD</code> -- Stochastic gradient descent. The
* goal of <code>SGD</code> is to minimize the gradient of the loss function. </li>
* </ul>
*/
inline MLModel& WithAlgorithm(Algorithm&& value) { SetAlgorithm(std::move(value)); return *this;}
/**
* <p>Identifies the <code>MLModel</code> category. The following are the available
* types:</p> <ul> <li> <code>REGRESSION</code> - Produces a numeric result. For
* example, "What price should a house be listed at?"</li> <li> <code>BINARY</code>
* - Produces one of two possible results. For example, "Is this a child-friendly
* web site?".</li> <li> <code>MULTICLASS</code> - Produces one of several possible
* results. For example, "Is this a HIGH-, LOW-, or MEDIUM<?oxy_delete
* author="annbech" timestamp="20160328T175050-0700" content=" "><?oxy_insert_start
* author="annbech" timestamp="20160328T175050-0700">-<?oxy_insert_end>risk
* trade?".</li> </ul>
*/
inline const MLModelType& GetMLModelType() const{ return m_mLModelType; }
/**
* <p>Identifies the <code>MLModel</code> category. The following are the available
* types:</p> <ul> <li> <code>REGRESSION</code> - Produces a numeric result. For
* example, "What price should a house be listed at?"</li> <li> <code>BINARY</code>
* - Produces one of two possible results. For example, "Is this a child-friendly
* web site?".</li> <li> <code>MULTICLASS</code> - Produces one of several possible
* results. For example, "Is this a HIGH-, LOW-, or MEDIUM<?oxy_delete
* author="annbech" timestamp="20160328T175050-0700" content=" "><?oxy_insert_start
* author="annbech" timestamp="20160328T175050-0700">-<?oxy_insert_end>risk
* trade?".</li> </ul>
*/
inline bool MLModelTypeHasBeenSet() const { return m_mLModelTypeHasBeenSet; }
/**
* <p>Identifies the <code>MLModel</code> category. The following are the available
* types:</p> <ul> <li> <code>REGRESSION</code> - Produces a numeric result. For
* example, "What price should a house be listed at?"</li> <li> <code>BINARY</code>
* - Produces one of two possible results. For example, "Is this a child-friendly
* web site?".</li> <li> <code>MULTICLASS</code> - Produces one of several possible
* results. For example, "Is this a HIGH-, LOW-, or MEDIUM<?oxy_delete
* author="annbech" timestamp="20160328T175050-0700" content=" "><?oxy_insert_start
* author="annbech" timestamp="20160328T175050-0700">-<?oxy_insert_end>risk
* trade?".</li> </ul>
*/
inline void SetMLModelType(const MLModelType& value) { m_mLModelTypeHasBeenSet = true; m_mLModelType = value; }
/**
* <p>Identifies the <code>MLModel</code> category. The following are the available
* types:</p> <ul> <li> <code>REGRESSION</code> - Produces a numeric result. For
* example, "What price should a house be listed at?"</li> <li> <code>BINARY</code>
* - Produces one of two possible results. For example, "Is this a child-friendly
* web site?".</li> <li> <code>MULTICLASS</code> - Produces one of several possible
* results. For example, "Is this a HIGH-, LOW-, or MEDIUM<?oxy_delete
* author="annbech" timestamp="20160328T175050-0700" content=" "><?oxy_insert_start
* author="annbech" timestamp="20160328T175050-0700">-<?oxy_insert_end>risk
* trade?".</li> </ul>
*/
inline void SetMLModelType(MLModelType&& value) { m_mLModelTypeHasBeenSet = true; m_mLModelType = std::move(value); }
/**
* <p>Identifies the <code>MLModel</code> category. The following are the available
* types:</p> <ul> <li> <code>REGRESSION</code> - Produces a numeric result. For
* example, "What price should a house be listed at?"</li> <li> <code>BINARY</code>
* - Produces one of two possible results. For example, "Is this a child-friendly
* web site?".</li> <li> <code>MULTICLASS</code> - Produces one of several possible
* results. For example, "Is this a HIGH-, LOW-, or MEDIUM<?oxy_delete
* author="annbech" timestamp="20160328T175050-0700" content=" "><?oxy_insert_start
* author="annbech" timestamp="20160328T175050-0700">-<?oxy_insert_end>risk
* trade?".</li> </ul>
*/
inline MLModel& WithMLModelType(const MLModelType& value) { SetMLModelType(value); return *this;}
/**
* <p>Identifies the <code>MLModel</code> category. The following are the available
* types:</p> <ul> <li> <code>REGRESSION</code> - Produces a numeric result. For
* example, "What price should a house be listed at?"</li> <li> <code>BINARY</code>
* - Produces one of two possible results. For example, "Is this a child-friendly
* web site?".</li> <li> <code>MULTICLASS</code> - Produces one of several possible
* results. For example, "Is this a HIGH-, LOW-, or MEDIUM<?oxy_delete
* author="annbech" timestamp="20160328T175050-0700" content=" "><?oxy_insert_start
* author="annbech" timestamp="20160328T175050-0700">-<?oxy_insert_end>risk
* trade?".</li> </ul>
*/
inline MLModel& WithMLModelType(MLModelType&& value) { SetMLModelType(std::move(value)); return *this;}
inline double GetScoreThreshold() const{ return m_scoreThreshold; }
inline bool ScoreThresholdHasBeenSet() const { return m_scoreThresholdHasBeenSet; }
inline void SetScoreThreshold(double value) { m_scoreThresholdHasBeenSet = true; m_scoreThreshold = value; }
inline MLModel& WithScoreThreshold(double value) { SetScoreThreshold(value); return *this;}
/**
* <p>The time of the most recent edit to the <code>ScoreThreshold</code>. The time
* is expressed in epoch time.</p>
*/
inline const Aws::Utils::DateTime& GetScoreThresholdLastUpdatedAt() const{ return m_scoreThresholdLastUpdatedAt; }
/**
* <p>The time of the most recent edit to the <code>ScoreThreshold</code>. The time
* is expressed in epoch time.</p>
*/
inline bool ScoreThresholdLastUpdatedAtHasBeenSet() const { return m_scoreThresholdLastUpdatedAtHasBeenSet; }
/**
* <p>The time of the most recent edit to the <code>ScoreThreshold</code>. The time
* is expressed in epoch time.</p>
*/
inline void SetScoreThresholdLastUpdatedAt(const Aws::Utils::DateTime& value) { m_scoreThresholdLastUpdatedAtHasBeenSet = true; m_scoreThresholdLastUpdatedAt = value; }
/**
* <p>The time of the most recent edit to the <code>ScoreThreshold</code>. The time
* is expressed in epoch time.</p>
*/
inline void SetScoreThresholdLastUpdatedAt(Aws::Utils::DateTime&& value) { m_scoreThresholdLastUpdatedAtHasBeenSet = true; m_scoreThresholdLastUpdatedAt = std::move(value); }
/**
* <p>The time of the most recent edit to the <code>ScoreThreshold</code>. The time
* is expressed in epoch time.</p>
*/
inline MLModel& WithScoreThresholdLastUpdatedAt(const Aws::Utils::DateTime& value) { SetScoreThresholdLastUpdatedAt(value); return *this;}
/**
* <p>The time of the most recent edit to the <code>ScoreThreshold</code>. The time
* is expressed in epoch time.</p>
*/
inline MLModel& WithScoreThresholdLastUpdatedAt(Aws::Utils::DateTime&& value) { SetScoreThresholdLastUpdatedAt(std::move(value)); return *this;}
/**
* <p>A description of the most recent details about accessing the
* <code>MLModel</code>.</p>
*/
inline const Aws::String& GetMessage() const{ return m_message; }
/**
* <p>A description of the most recent details about accessing the
* <code>MLModel</code>.</p>
*/
inline bool MessageHasBeenSet() const { return m_messageHasBeenSet; }
/**
* <p>A description of the most recent details about accessing the
* <code>MLModel</code>.</p>
*/
inline void SetMessage(const Aws::String& value) { m_messageHasBeenSet = true; m_message = value; }
/**
* <p>A description of the most recent details about accessing the
* <code>MLModel</code>.</p>
*/
inline void SetMessage(Aws::String&& value) { m_messageHasBeenSet = true; m_message = std::move(value); }
/**
* <p>A description of the most recent details about accessing the
* <code>MLModel</code>.</p>
*/
inline void SetMessage(const char* value) { m_messageHasBeenSet = true; m_message.assign(value); }
/**
* <p>A description of the most recent details about accessing the
* <code>MLModel</code>.</p>
*/
inline MLModel& WithMessage(const Aws::String& value) { SetMessage(value); return *this;}
/**
* <p>A description of the most recent details about accessing the
* <code>MLModel</code>.</p>
*/
inline MLModel& WithMessage(Aws::String&& value) { SetMessage(std::move(value)); return *this;}
/**
* <p>A description of the most recent details about accessing the
* <code>MLModel</code>.</p>
*/
inline MLModel& WithMessage(const char* value) { SetMessage(value); return *this;}
inline long long GetComputeTime() const{ return m_computeTime; }
inline bool ComputeTimeHasBeenSet() const { return m_computeTimeHasBeenSet; }
inline void SetComputeTime(long long value) { m_computeTimeHasBeenSet = true; m_computeTime = value; }
inline MLModel& WithComputeTime(long long value) { SetComputeTime(value); return *this;}
inline const Aws::Utils::DateTime& GetFinishedAt() const{ return m_finishedAt; }
inline bool FinishedAtHasBeenSet() const { return m_finishedAtHasBeenSet; }
inline void SetFinishedAt(const Aws::Utils::DateTime& value) { m_finishedAtHasBeenSet = true; m_finishedAt = value; }
inline void SetFinishedAt(Aws::Utils::DateTime&& value) { m_finishedAtHasBeenSet = true; m_finishedAt = std::move(value); }
inline MLModel& WithFinishedAt(const Aws::Utils::DateTime& value) { SetFinishedAt(value); return *this;}
inline MLModel& WithFinishedAt(Aws::Utils::DateTime&& value) { SetFinishedAt(std::move(value)); return *this;}
inline const Aws::Utils::DateTime& GetStartedAt() const{ return m_startedAt; }
inline bool StartedAtHasBeenSet() const { return m_startedAtHasBeenSet; }
inline void SetStartedAt(const Aws::Utils::DateTime& value) { m_startedAtHasBeenSet = true; m_startedAt = value; }
inline void SetStartedAt(Aws::Utils::DateTime&& value) { m_startedAtHasBeenSet = true; m_startedAt = std::move(value); }
inline MLModel& WithStartedAt(const Aws::Utils::DateTime& value) { SetStartedAt(value); return *this;}
inline MLModel& WithStartedAt(Aws::Utils::DateTime&& value) { SetStartedAt(std::move(value)); return *this;}
private:
Aws::String m_mLModelId;
bool m_mLModelIdHasBeenSet;
Aws::String m_trainingDataSourceId;
bool m_trainingDataSourceIdHasBeenSet;
Aws::String m_createdByIamUser;
bool m_createdByIamUserHasBeenSet;
Aws::Utils::DateTime m_createdAt;
bool m_createdAtHasBeenSet;
Aws::Utils::DateTime m_lastUpdatedAt;
bool m_lastUpdatedAtHasBeenSet;
Aws::String m_name;
bool m_nameHasBeenSet;
EntityStatus m_status;
bool m_statusHasBeenSet;
long long m_sizeInBytes;
bool m_sizeInBytesHasBeenSet;
RealtimeEndpointInfo m_endpointInfo;
bool m_endpointInfoHasBeenSet;
Aws::Map<Aws::String, Aws::String> m_trainingParameters;
bool m_trainingParametersHasBeenSet;
Aws::String m_inputDataLocationS3;
bool m_inputDataLocationS3HasBeenSet;
Algorithm m_algorithm;
bool m_algorithmHasBeenSet;
MLModelType m_mLModelType;
bool m_mLModelTypeHasBeenSet;
double m_scoreThreshold;
bool m_scoreThresholdHasBeenSet;
Aws::Utils::DateTime m_scoreThresholdLastUpdatedAt;
bool m_scoreThresholdLastUpdatedAtHasBeenSet;
Aws::String m_message;
bool m_messageHasBeenSet;
long long m_computeTime;
bool m_computeTimeHasBeenSet;
Aws::Utils::DateTime m_finishedAt;
bool m_finishedAtHasBeenSet;
Aws::Utils::DateTime m_startedAt;
bool m_startedAtHasBeenSet;
};
} // namespace Model
} // namespace MachineLearning
} // namespace Aws