five modes duplication
This commit is contained in:
44
SVM_test.py
Normal file
44
SVM_test.py
Normal file
@@ -0,0 +1,44 @@
|
||||
# Name:fang xiaoyu
|
||||
# Time: 2023/3/11 22:30
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
# 读取CSV文件
|
||||
data = pd.read_csv('sufshark_openvpn_tcp+youdao_header.csv')
|
||||
|
||||
# 将类别转换为数字标签
|
||||
# le = preprocessing.LabelEncoder()
|
||||
# data['label'] = le.fit_transform(data['label'])
|
||||
data["class1"] = data["class1"].replace({"VPN": 1, "Non-VPN": 0})
|
||||
|
||||
# 分离特征和类别
|
||||
X = data.iloc[:, :-1]
|
||||
y = data.iloc[:, -1]
|
||||
|
||||
# # 分离特征和标签
|
||||
# X = data.drop('label', axis=1)
|
||||
# y = data['label']
|
||||
|
||||
# 划分训练集和测试集
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
|
||||
|
||||
# 创建SVM模型
|
||||
svm_model = SVC()
|
||||
|
||||
# 在训练集上训练模型
|
||||
svm_model.fit(X_train, y_train)
|
||||
|
||||
# 在测试集上评估模型
|
||||
predictions = svm_model.predict(X_test)
|
||||
print(classification_report(y_test, predictions))
|
||||
|
||||
# precision recall f1-score support
|
||||
#
|
||||
# 0 0.59 0.42 0.49 1720
|
||||
# 1 0.61 0.76 0.67 2032
|
||||
#
|
||||
# accuracy 0.60 3752
|
||||
# macro avg 0.60 0.59 0.58 3752
|
||||
# weighted avg 0.60 0.60 0.59 3752
|
||||
Reference in New Issue
Block a user