five modes duplication
This commit is contained in:
47
C4.5_test.py
Normal file
47
C4.5_test.py
Normal file
@@ -0,0 +1,47 @@
|
||||
# Name:fang xiaoyu
|
||||
# Time: 2023/3/11 22:28
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.tree import DecisionTreeClassifier
|
||||
from sklearn.metrics import accuracy_score
|
||||
from sklearn import preprocessing
|
||||
from sklearn import tree
|
||||
from sklearn.metrics import classification_report
|
||||
|
||||
# 加载CSV文件
|
||||
data = pd.read_csv('sufshark_openvpn_tcp+youdao_header.csv')
|
||||
|
||||
# 将类别转换为数字标签
|
||||
# le = preprocessing.LabelEncoder()
|
||||
# data['label'] = le.fit_transform(data['label'])
|
||||
data["class1"] = data["class1"].replace({"VPN": 1, "Non-VPN": 0})
|
||||
|
||||
# 分离特征和类别
|
||||
X = data.iloc[:, :-1]
|
||||
y = data.iloc[:, -1]
|
||||
|
||||
# 划分数据集
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
|
||||
|
||||
# 初始化分类器并训练模型
|
||||
clf = DecisionTreeClassifier(criterion="entropy")
|
||||
clf.fit(X_train, y_train)
|
||||
|
||||
# 预测测试数据集
|
||||
y_pred = clf.predict(X_test)
|
||||
|
||||
# 评估分类器的性能
|
||||
print("Accuracy:", accuracy_score(y_test, y_pred))
|
||||
print(classification_report(y_test, y_pred))
|
||||
# 可视化决策树
|
||||
tree.plot_tree(clf)
|
||||
|
||||
#Accuracy: 0.8841506751954513
|
||||
# precision recall f1-score support
|
||||
#
|
||||
# 0 0.89 0.86 0.87 2708
|
||||
# 1 0.88 0.90 0.89 2920
|
||||
#
|
||||
# accuracy 0.88 5628
|
||||
# macro avg 0.88 0.88 0.88 5628
|
||||
# weighted avg 0.88 0.88 0.88 5628
|
||||
Reference in New Issue
Block a user