This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
grityu-model-duplication/C4.5_test.py

47 lines
1.4 KiB
Python
Raw Permalink Normal View History

2023-03-16 22:42:35 +08:00
# Name:fang xiaoyu
# Time: 2023/3/11 22:28
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import preprocessing
from sklearn import tree
from sklearn.metrics import classification_report
# 加载CSV文件
data = pd.read_csv('sufshark_openvpn_tcp+youdao_header.csv')
# 将类别转换为数字标签
# le = preprocessing.LabelEncoder()
# data['label'] = le.fit_transform(data['label'])
data["class1"] = data["class1"].replace({"VPN": 1, "Non-VPN": 0})
# 分离特征和类别
X = data.iloc[:, :-1]
y = data.iloc[:, -1]
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
# 初始化分类器并训练模型
clf = DecisionTreeClassifier(criterion="entropy")
clf.fit(X_train, y_train)
# 预测测试数据集
y_pred = clf.predict(X_test)
# 评估分类器的性能
print("Accuracy:", accuracy_score(y_test, y_pred))
print(classification_report(y_test, y_pred))
# 可视化决策树
tree.plot_tree(clf)
#Accuracy: 0.8841506751954513
# precision recall f1-score support
#
# 0 0.89 0.86 0.87 2708
# 1 0.88 0.90 0.89 2920
#
# accuracy 0.88 5628
# macro avg 0.88 0.88 0.88 5628
# weighted avg 0.88 0.88 0.88 5628