datasketch部分代码采用reduce方式
This commit is contained in:
@@ -228,8 +228,8 @@ public class Toptask {
|
||||
case 2:
|
||||
//datasketch
|
||||
|
||||
|
||||
//clientip聚合TOP
|
||||
|
||||
SingleOutputStreamOperator<Entity> clientipdStream2 = inputForSession.filter(new FilterFunction<Entity>() {
|
||||
@Override
|
||||
public boolean filter(Entity value) throws Exception {
|
||||
@@ -237,24 +237,12 @@ public class Toptask {
|
||||
}
|
||||
}).assignTimestampsAndWatermarks(strategyForSession);
|
||||
|
||||
|
||||
clientipdStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("oneSession"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-CLIENT-IP")).setParallelism(3);
|
||||
|
||||
clientipdStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("onePkt"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-CLIENT-IP")).setParallelism(3);
|
||||
|
||||
|
||||
clientipdStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("oneByte"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-CLIENT-IP")).setParallelism(3);
|
||||
|
||||
|
||||
SingleOutputStreamOperator<ResultEntity> windowedStream2 = clientipdStream2.keyBy(new groupBySelector("common_client_ip"))
|
||||
.window(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.reduce(new metricsAggregationReduce(), new DatasketchMetricsCalculate(TOP_LIMIT, "common_client_ip")).setParallelism(TASK_PARALLELISM);
|
||||
DataStream<String> windoweddStream2 = windowedStream2.keyBy(new oneKeySelector())
|
||||
.process(new TopNHotItems(TOP_LIMIT)).setParallelism(3);
|
||||
windoweddStream2.addSink(getKafkaSink("TOP-CLIENT-IP")).setParallelism(3);
|
||||
|
||||
//serverip聚合TOP
|
||||
|
||||
@@ -265,21 +253,12 @@ public class Toptask {
|
||||
}
|
||||
}).assignTimestampsAndWatermarks(strategyForSession);
|
||||
|
||||
serveripdStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("twoSession"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-SERVER-IP")).setParallelism(3);
|
||||
|
||||
serveripdStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("twoPkt"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-SERVER-IP")).setParallelism(3);
|
||||
|
||||
serveripdStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("twoByte"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-SERVER-IP")).setParallelism(3);
|
||||
|
||||
SingleOutputStreamOperator<ResultEntity> windowedStreamForServerIp2 = serveripdStream2.keyBy(new groupBySelector("common_server_ip"))
|
||||
.window(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.reduce(new metricsAggregationReduce(), new DatasketchMetricsCalculate(TOP_LIMIT, "common_server_ip")).setParallelism(TASK_PARALLELISM);
|
||||
DataStream<String> windoweddStreamForServerIp2 = windowedStreamForServerIp2.keyBy(new oneKeySelector())
|
||||
.process(new TopNHotItems(TOP_LIMIT)).setParallelism(3);
|
||||
windoweddStreamForServerIp2.addSink(getKafkaSink("TOP-SERVER-IP")).setParallelism(3);
|
||||
|
||||
|
||||
//common_internal_ip聚合TOP
|
||||
@@ -290,22 +269,12 @@ public class Toptask {
|
||||
}
|
||||
}).assignTimestampsAndWatermarks(strategyForSession);
|
||||
|
||||
internalStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("threeSession"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-INTERNAL-HOST")).setParallelism(3);
|
||||
|
||||
internalStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("threePkt"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-INTERNAL-HOST")).setParallelism(3);
|
||||
|
||||
internalStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("threeByte"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-INTERNAL-HOST")).setParallelism(3);
|
||||
|
||||
|
||||
SingleOutputStreamOperator<ResultEntity> windowedStreamForInternal2 = internalStream2.keyBy(new groupBySelector("common_internal_ip"))
|
||||
.window(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.reduce(new metricsAggregationReduce(), new DatasketchMetricsCalculate(TOP_LIMIT, "common_internal_ip")).setParallelism(TASK_PARALLELISM);
|
||||
DataStream<String> WindoweddStreamForInternal2 = windowedStreamForInternal2.keyBy(new oneKeySelector())
|
||||
.process(new TopNHotItems(TOP_LIMIT)).setParallelism(3);
|
||||
WindoweddStreamForInternal2.addSink(getKafkaSink("TOP-INTERNAL-HOST")).setParallelism(3);
|
||||
|
||||
//common_external_ip聚合TOP
|
||||
|
||||
@@ -316,22 +285,12 @@ public class Toptask {
|
||||
}
|
||||
}).assignTimestampsAndWatermarks(strategyForSession);
|
||||
|
||||
externalStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("fourSession"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-EXTERNAL-HOST")).setParallelism(3);
|
||||
|
||||
externalStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("fourPkt"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-EXTERNAL-HOST")).setParallelism(3);
|
||||
|
||||
externalStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("fourByte"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-EXTERNAL-HOST")).setParallelism(3);
|
||||
|
||||
|
||||
SingleOutputStreamOperator<ResultEntity> windowedStreamForExternal2 = externalStream2.keyBy(new groupBySelector("common_external_ip"))
|
||||
.window(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.reduce(new metricsAggregationReduce(), new DatasketchMetricsCalculate(TOP_LIMIT, "common_external_ip")).setParallelism(TASK_PARALLELISM);
|
||||
DataStream<String> WindoweddStreamForExternal2 = windowedStreamForExternal2.keyBy(new oneKeySelector())
|
||||
.process(new TopNHotItems(TOP_LIMIT)).setParallelism(3);
|
||||
WindoweddStreamForExternal2.addSink(getKafkaSink("TOP-EXTERNAL-HOST")).setParallelism(3);
|
||||
|
||||
//http_domain聚合TOP
|
||||
|
||||
@@ -342,24 +301,13 @@ public class Toptask {
|
||||
}
|
||||
}).assignTimestampsAndWatermarks(strategyForSession);
|
||||
|
||||
SingleOutputStreamOperator<ResultEntity> windowedStreamForDomain2 = domainStream2.keyBy(new groupBySelector("http_domain"))
|
||||
.window(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.reduce(new metricsAggregationReduce(), new DatasketchMetricsCalculate(TOP_LIMIT, "http_domain")).setParallelism(TASK_PARALLELISM);
|
||||
DataStream<String> WindoweddStreamForDomain2 = windowedStreamForDomain2.keyBy(new oneKeySelector())
|
||||
.process(new TopNHotItems(TOP_LIMIT)).setParallelism(3);
|
||||
WindoweddStreamForDomain2.addSink(getKafkaSink("TOP-WEBSITE-DOMAIN")).setParallelism(3);
|
||||
|
||||
domainStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("fiveSession"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-WEBSITE-DOMAIN")).setParallelism(3);
|
||||
|
||||
domainStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("fivePkt"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-WEBSITE-DOMAIN")).setParallelism(3);
|
||||
|
||||
domainStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("fiveByte"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-WEBSITE-DOMAIN")).setParallelism(3);
|
||||
|
||||
|
||||
//common_subscriber_id聚合TOP
|
||||
SingleOutputStreamOperator<Entity> userStream2 = inputForSession.filter(new FilterFunction<Entity>() {
|
||||
@Override
|
||||
public boolean filter(Entity value) throws Exception {
|
||||
@@ -367,20 +315,13 @@ public class Toptask {
|
||||
}
|
||||
}).assignTimestampsAndWatermarks(strategyForSession);
|
||||
|
||||
userStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("sixSession"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-USER")).setParallelism(3);
|
||||
|
||||
userStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("sixPkt"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-USER")).setParallelism(3);
|
||||
|
||||
userStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("sixByte"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-USER")).setParallelism(3);
|
||||
//common_subscriber_id聚合TOP
|
||||
SingleOutputStreamOperator<ResultEntity> windowedStreamForUser2 = userStream2.keyBy(new groupBySelector("common_subscriber_id"))
|
||||
.window(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.reduce(new metricsAggregationReduce(), new DatasketchMetricsCalculate(TOP_LIMIT, "common_subscriber_id")).setParallelism(TASK_PARALLELISM);
|
||||
DataStream<String> WindoweddStreamForUser2 = windowedStreamForUser2.keyBy(new oneKeySelector())
|
||||
.process(new TopNHotItems(TOP_LIMIT)).setParallelism(3);
|
||||
WindoweddStreamForUser2.addSink(getKafkaSink("TOP-USER")).setParallelism(3);
|
||||
|
||||
|
||||
//common_app_label聚合求全量
|
||||
@@ -392,26 +333,14 @@ public class Toptask {
|
||||
}).assignTimestampsAndWatermarks(strategyForSession);
|
||||
|
||||
|
||||
appNameStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("sevenSession"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TRAFFIC-APP-STAT")).setParallelism(TASK_PARALLELISM);
|
||||
|
||||
appNameStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("sevenPkt"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TRAFFIC-APP-STAT")).setParallelism(TASK_PARALLELISM);
|
||||
|
||||
appNameStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForMetricsAggregate("sevenByte"), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TRAFFIC-APP-STAT")).setParallelism(TASK_PARALLELISM);
|
||||
appNameStream2.keyBy(new groupBySelector("common_app_label"))
|
||||
.window(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.reduce(new metricsAggregationReduce(), new metricsCalculateForApp()).addSink(getKafkaSink("TRAFFIC-APP-STAT")).setParallelism(TASK_PARALLELISM);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
//Security_record top 1000 1个窗口、proxy_record top 1000 1个窗口
|
||||
//url聚合session求top
|
||||
SingleOutputStreamOperator<UrlEntity> UrlStream2 = inputForUrl.filter(new FilterFunction<UrlEntity>() {
|
||||
@Override
|
||||
public boolean filter(UrlEntity value) throws Exception {
|
||||
@@ -420,29 +349,12 @@ public class Toptask {
|
||||
}).assignTimestampsAndWatermarks(strategyForSecurity);
|
||||
|
||||
|
||||
UrlStream2.windowAll(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.aggregate(new DatasketchForUrlAggregate(), new UserCountWindowResult5())
|
||||
// .print()
|
||||
.addSink(getKafkaSink("TOP-URLS")).setParallelism(3);
|
||||
|
||||
|
||||
|
||||
|
||||
//clientip聚合TOP
|
||||
|
||||
// SingleOutputStreamOperator<Entity> clientipdStream3 = inputForSession.filter(new FilterFunction<Entity>() {
|
||||
// @Override
|
||||
// public boolean filter(Entity value) throws Exception {
|
||||
// return "IPv6_TCP".equals(value.getCommon_l4_protocol()) || "IPv4_TCP".equals(value.getCommon_l4_protocol());
|
||||
// }
|
||||
// }).assignTimestampsAndWatermarks(strategyForSession);
|
||||
//
|
||||
// SingleOutputStreamOperator<ResultEntity> windowedStream3 = clientipdStream3.keyBy(new groupBySelector("common_client_ip"))
|
||||
// .window(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
// .reduce(new metricsAggregationReduce(), new metricsCalculate(TOP_LIMIT, "common_client_ip")).setParallelism(TASK_PARALLELISM);
|
||||
// DataStream<String> windoweddStream3 = windowedStream3.keyBy(new oneKeySelector())
|
||||
// .process(new TopNHotItems(TOP_LIMIT)).setParallelism(3);
|
||||
// windoweddStream3.print();
|
||||
SingleOutputStreamOperator<ResultEntity> windowedStreamForUrl2 = UrlStream2.keyBy(new twoKeySelector())
|
||||
.window(TumblingEventTimeWindows.of(Time.minutes(WINDOW_TIME_MINUTE)))
|
||||
.reduce(new UrlAggregationReduce(), new DatasketchUrlCalculate(URL_TOP_LIMIT)).setParallelism(TASK_PARALLELISM);
|
||||
DataStream<String> WindoweddStreamForUrl2 = windowedStreamForUrl2.keyBy(new oneKeySelector())
|
||||
.process(new TopNHotItemsForUrl(URL_TOP_LIMIT)).setParallelism(1);
|
||||
WindoweddStreamForUrl2.addSink(getKafkaSink("TOP-URLS")).setParallelism(3);
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user