This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
galaxy-tsg-olap-storm-log-s…/properties/service_flow_config.properties
2020-02-06 14:28:54 +08:00

79 lines
1.9 KiB
Properties
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#管理kafka地址
#bootstrap.servers=192.168.40.119:9092,192.168.40.122:9092,192.168.40.123:9092
bootstrap.servers=192.168.40.151:9092
#zookeeper 地址
zookeeper.servers=192.168.40.151:2181
#zookeeper.servers=192.168.40.119:2181,192.168.40.122:2181,192.168.40.123:2181
#hbase zookeeper地址
#hbase.zookeeper.servers=192.168.40.119:2181,192.168.40.122:2181,192.168.40.123:2181
hbase.zookeeper.servers=192.168.40.151:2181
#hbase tablename
hbase.table.name=subscriber_info
#latest/earliest
auto.offset.reset=latest
#kafka broker下的topic名称
kafka.topic=SECURITY-EVENT-LOG
#读取topic,存储该spout id的消费offset信息可通过该拓扑命名;具体存储offset的位置确定下次读取不重复的数据
group.id=security-policy-200204
#输出topic
results.output.topic=SECURITY-EVENT-COMPLETED-LOG
#storm topology workers
topology.workers=1
#spout并行度 建议与kafka分区数相同
spout.parallelism=3
#处理补全操作的bolt并行度-worker的倍数
datacenter.bolt.parallelism=1
#写入kafka的并行度10
kafka.bolt.parallelism=3
#定位库地址
#ip.library=/home/ceiec/topology/dat/
#ip.library=D:\\workerSpace\\K18-Phase2\\3.0.2019115\\log-stream-completion\\
ip.library=D:\\dat\\
#kafka批量条数
batch.insert.num=2000
#网关的schema位置
schema.http=http://192.168.40.151:9999/metadata/schema/v1/fields/security_event_log
#数据中心UID
data.center.id.num=15
#tick时钟频率
topology.tick.tuple.freq.secs=5
#hbase 更新时间
hbase.tick.tuple.freq.secs=60
#当bolt性能受限时限制spout接收速度理论看ack开启才有效
topology.config.max.spout.pending=150000
#ack设置 1启动ack 0不启动ack
topology.num.acks=0
#spout接收睡眠时间
topology.spout.sleep.time=1
#用于过滤对准用户名
check.ip.scope=10,100,192
#允许发送kafka最大失败数
max.failure.num=20
#influx地址
influx.ip=http://192.168.40.151:8086
#influx用户名
influx.username=admin
#influx密码
influx.password=admin