85 lines
4.3 KiB
Java
85 lines
4.3 KiB
Java
package com.zdjizhi.topology;
|
||
|
||
import cn.hutool.log.Log;
|
||
import cn.hutool.log.LogFactory;
|
||
import com.zdjizhi.common.StreamAggregateConfig;
|
||
import com.zdjizhi.utils.functions.keyby.FirstKeyByFunction;
|
||
import com.zdjizhi.utils.functions.keyby.SecondKeyByFunction;
|
||
import com.zdjizhi.utils.functions.parse.ParseMapFunction;
|
||
import com.zdjizhi.utils.functions.result.ResultFlatMapFunction;
|
||
import com.zdjizhi.utils.functions.statistics.FirstCountWindowFunction;
|
||
import com.zdjizhi.utils.functions.statistics.SecondCountWindowFunction;
|
||
import com.zdjizhi.utils.kafka.KafkaConsumer;
|
||
import com.zdjizhi.utils.kafka.KafkaProducer;
|
||
import org.apache.flink.api.java.tuple.Tuple2;
|
||
import org.apache.flink.api.java.tuple.Tuple3;
|
||
import org.apache.flink.streaming.api.datastream.DataStream;
|
||
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
|
||
import org.apache.flink.streaming.api.datastream.WindowedStream;
|
||
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
|
||
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
|
||
import org.apache.flink.streaming.api.windowing.time.Time;
|
||
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
|
||
|
||
import java.util.Map;
|
||
|
||
|
||
/**
|
||
* @author qidaijie
|
||
* @Package com.zdjizhi.topology
|
||
* @Description:
|
||
* @date 2021/5/2016:42
|
||
*/
|
||
public class StreamAggregateTopology {
|
||
private static final Log logger = LogFactory.get();
|
||
|
||
public static void main(String[] args) {
|
||
try {
|
||
final StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
|
||
|
||
//两个输出之间的最大时间 (单位milliseconds)
|
||
environment.setBufferTimeout(StreamAggregateConfig.BUFFER_TIMEOUT);
|
||
|
||
//解析原始日志
|
||
DataStream<String> streamSource = environment.addSource(KafkaConsumer.getKafkaConsumer())
|
||
.setParallelism(StreamAggregateConfig.SOURCE_PARALLELISM).name(StreamAggregateConfig.SOURCE_KAFKA_TOPIC);
|
||
|
||
//解析原始日志初步聚合计算,增加自定义key 缓解数据倾斜
|
||
SingleOutputStreamOperator<Tuple3<String, String, Map<String, Object>>> parseDataMap = streamSource.map(new ParseMapFunction())
|
||
.name("ParseDataMap")
|
||
.setParallelism(StreamAggregateConfig.PARSE_PARALLELISM);
|
||
|
||
//初步聚合计算,增加自定义key 缓解数据倾斜
|
||
WindowedStream<Tuple3<String, String, Map<String, Object>>, String, TimeWindow> firstWindow = parseDataMap.keyBy(new FirstKeyByFunction())
|
||
.window(TumblingProcessingTimeWindows.of(Time.seconds(StreamAggregateConfig.FIRST_COUNT_WINDOW_TIME)));
|
||
|
||
//初次聚合计算窗口
|
||
SingleOutputStreamOperator<Tuple2<String, Map<String, Object>>> metricCountWindow = firstWindow.process(new FirstCountWindowFunction())
|
||
.name("FirstCountWindow")
|
||
.setParallelism(StreamAggregateConfig.FIRST_WINDOW_PARALLELISM);
|
||
|
||
//二次聚合计算,使用业务的key 进行数据汇总
|
||
WindowedStream<Tuple2<String, Map<String, Object>>, String, TimeWindow> secondWindow = metricCountWindow.keyBy(new SecondKeyByFunction())
|
||
.window(TumblingProcessingTimeWindows.of(Time.seconds(StreamAggregateConfig.SECOND_COUNT_WINDOW_TIME)));
|
||
|
||
//二次聚合计算窗口
|
||
SingleOutputStreamOperator<Map<String, Object>> secondCountWindow = secondWindow.process(new SecondCountWindowFunction())
|
||
.name("SecondCountWindow").setParallelism(StreamAggregateConfig.SECOND_WINDOW_PARALLELISM);
|
||
|
||
//拆解结果数据按protocol id循环输出
|
||
SingleOutputStreamOperator<String> resultFlatMap = secondCountWindow.flatMap(new ResultFlatMapFunction())
|
||
.name("ResultFlatMap").setParallelism(StreamAggregateConfig.SINK_PARALLELISM);
|
||
|
||
//输出到kafka
|
||
resultFlatMap.addSink(KafkaProducer.getKafkaProducer()).name("LogSinkKafka")
|
||
.setParallelism(StreamAggregateConfig.SINK_PARALLELISM).name(StreamAggregateConfig.SINK_KAFKA_TOPIC);
|
||
|
||
environment.execute(args[0]);
|
||
} catch (Exception e) {
|
||
logger.error("This Flink task start ERROR! Exception information is :" + e);
|
||
}
|
||
|
||
}
|
||
|
||
}
|