修改配置文件名称
修改统计逻辑两层窗口计算
This commit is contained in:
@@ -6,7 +6,9 @@ import com.zdjizhi.common.StreamAggregateConfig;
|
||||
import com.zdjizhi.utils.functions.*;
|
||||
import com.zdjizhi.utils.kafka.Consumer;
|
||||
import com.zdjizhi.utils.kafka.Producer;
|
||||
import org.apache.flink.api.java.tuple.Tuple2;
|
||||
import org.apache.flink.api.java.tuple.Tuple3;
|
||||
import org.apache.flink.api.java.tuple.Tuple4;
|
||||
import org.apache.flink.streaming.api.datastream.DataStream;
|
||||
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
|
||||
import org.apache.flink.streaming.api.datastream.WindowedStream;
|
||||
@@ -31,20 +33,31 @@ public class StreamAggregateTopology {
|
||||
|
||||
// environment.enableCheckpointing(5000);
|
||||
|
||||
DataStream<String> streamSource = environment.addSource(Consumer.getKafkaConsumer())
|
||||
.setParallelism(StreamAggregateConfig.CONSUMER_PARALLELISM);
|
||||
//两个输出之间的最大时间 (单位milliseconds)
|
||||
environment.setBufferTimeout(StreamAggregateConfig.BUFFER_TIMEOUT);
|
||||
|
||||
SingleOutputStreamOperator<Tuple3<String, String, String>> parseDataMap = streamSource.map(new MapParseFunction()).name("ParseDataMap")
|
||||
DataStream<String> streamSource = environment.addSource(Consumer.getKafkaConsumer())
|
||||
.setParallelism(StreamAggregateConfig.SOURCE_PARALLELISM);
|
||||
|
||||
SingleOutputStreamOperator<Tuple4<String, String, String, String>> parseDataMap = streamSource.map(new MapParseFunction())
|
||||
.name("ParseDataMap")
|
||||
.setParallelism(StreamAggregateConfig.PARSE_PARALLELISM);
|
||||
|
||||
WindowedStream<Tuple3<String, String, String>, String, TimeWindow> window = parseDataMap.keyBy(new KeyByFunction())
|
||||
WindowedStream<Tuple4<String, String, String, String>, String, TimeWindow> firstWindow = parseDataMap.keyBy(new FirstKeyByFunction())
|
||||
.window(TumblingProcessingTimeWindows.of(Time.seconds(5)));
|
||||
|
||||
SingleOutputStreamOperator<Tuple2<String, String>> metricCountWindow = firstWindow.process(new FirstCountWindowFunction())
|
||||
.name("FirstCountWindow")
|
||||
.setParallelism(StreamAggregateConfig.FIRST_WINDOW_PARALLELISM);
|
||||
|
||||
WindowedStream<Tuple2<String, String>, String, TimeWindow> secondWindow = metricCountWindow.keyBy(new SecondKeyByFunction())
|
||||
.window(TumblingProcessingTimeWindows.of(Time.seconds(StreamAggregateConfig.COUNT_WINDOW_TIME)));
|
||||
|
||||
SingleOutputStreamOperator<String> metricCountWindow = window.process(new CountWindowFunction()).name("MetricCountWindow")
|
||||
.setParallelism(StreamAggregateConfig.PARSE_PARALLELISM);
|
||||
SingleOutputStreamOperator<String> secondCountWindow = secondWindow.process(new SecondCountWindowFunction())
|
||||
.name("SecondCountWindow").setParallelism(StreamAggregateConfig.SECOND_WINDOW_PARALLELISM);
|
||||
|
||||
metricCountWindow.flatMap(new ResultFlatMapFunction()).name("ResultFlatMap").setParallelism(StreamAggregateConfig.PARSE_PARALLELISM)
|
||||
.addSink(Producer.getKafkaProducer()).name("LogSinkKafka").setParallelism(StreamAggregateConfig.PARSE_PARALLELISM);
|
||||
secondCountWindow.flatMap(new ResultFlatMapFunction()).name("ResultFlatMap").setParallelism(StreamAggregateConfig.SINK_PARALLELISM)
|
||||
.addSink(Producer.getKafkaProducer()).name("LogSinkKafka").setParallelism(StreamAggregateConfig.SINK_PARALLELISM);
|
||||
|
||||
environment.execute(args[0]);
|
||||
} catch (Exception e) {
|
||||
|
||||
Reference in New Issue
Block a user