package com.zdjizhi.topology; import cn.hutool.log.Log; import cn.hutool.log.LogFactory; import com.zdjizhi.common.FlowWriteConfig; import com.zdjizhi.utils.functions.FilterNullFunction; import com.zdjizhi.utils.functions.MapCompletedFunction; import com.zdjizhi.utils.functions.TypeMapCompletedFunction; import com.zdjizhi.utils.kafka.KafkaConsumer; import com.zdjizhi.utils.kafka.KafkaProducer; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import java.util.Map; /** * @author qidaijie * @Package com.zdjizhi.topology * @Description: * @date 2021/5/2016:42 */ public class LogFlowWriteTopology { private static final Log logger = LogFactory.get(); public static void main(String[] args) { final StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment(); //两个输出之间的最大时间 (单位milliseconds) environment.setBufferTimeout(FlowWriteConfig.BUFFER_TIMEOUT); if (FlowWriteConfig.LOG_NEED_COMPLETE == 1) { SingleOutputStreamOperator> streamSource = environment.addSource(KafkaConsumer.myDeserializationConsumer()) .setParallelism(FlowWriteConfig.SOURCE_PARALLELISM).name(FlowWriteConfig.SOURCE_KAFKA_TOPIC); DataStream cleaningLog; switch (FlowWriteConfig.LOG_TRANSFORM_TYPE) { case 0: //对原始日志进行处理补全转换等,不对日志字段类型做校验。 cleaningLog = streamSource.map(new MapCompletedFunction()).name("MapCompletedFunction") .setParallelism(FlowWriteConfig.TRANSFORM_PARALLELISM); break; case 1: //对原始日志进行处理补全转换等,对日志字段类型做若校验,可根据schema进行强转。 cleaningLog = streamSource.map(new TypeMapCompletedFunction()).name("TypeMapCompletedFunction") .setParallelism(FlowWriteConfig.TRANSFORM_PARALLELISM); break; default: //对原始日志进行处理补全转换等,不对日志字段类型做校验。 cleaningLog = streamSource.map(new MapCompletedFunction()).name("MapCompletedFunction") .setParallelism(FlowWriteConfig.TRANSFORM_PARALLELISM); } //过滤空数据不发送到Kafka内 DataStream result = cleaningLog.filter(new FilterNullFunction()).name("FilterAbnormalData") .setParallelism(FlowWriteConfig.TRANSFORM_PARALLELISM); //发送数据到Kafka result.addSink(KafkaProducer.getKafkaProducer()).name(FlowWriteConfig.SINK_KAFKA_TOPIC) .setParallelism(FlowWriteConfig.SINK_PARALLELISM); } else { DataStreamSource streamSource = environment.addSource(KafkaConsumer.flinkConsumer()) .setParallelism(FlowWriteConfig.SOURCE_PARALLELISM); //过滤空数据不发送到Kafka内 DataStream result = streamSource.filter(new FilterNullFunction()).name("FilterOriginalData") .setParallelism(FlowWriteConfig.TRANSFORM_PARALLELISM); //发送数据到Kafka result.addSink(KafkaProducer.getKafkaProducer()).name(FlowWriteConfig.SINK_KAFKA_TOPIC) .setParallelism(FlowWriteConfig.SINK_PARALLELISM); } try { environment.execute(args[0]); } catch (Exception e) { logger.error("This Flink task start ERROR! Exception information is :" + e); e.printStackTrace(); } } }