#Druid配置 druid.url=jdbc:avatica:remote:url=http://192.168.44.12:8082/druid/v2/sql/avatica/ druid.driver=org.apache.calcite.avatica.remote.Driver druid.table=top_server_ip_test_log #字段映射 druid.attacktype.tcpsynflood=sessions druid.attacktype.udpflood=bytes druid.attacktype.icmpflood=packets druid.attacktype.dnsamplification=packets druid.serverip.columnname=destination druid.attacktype.columnname=order_by druid.recvtime.columnname=__time #baseline生成metric baseline.metric.type=session_num #HBase配置 hbase.table=ddos_traffic_baselines hbase.zookeeper.quorum=192.168.44.12 hbase.zookeeper.client.port=2181 #读取druid时间范围方式,0:读取默认范围read.druid.time.range天数;1:指定时间范围 read.druid.time.limit.type=1 #07-01 read.druid.min.time=1625068800000 #06-01 #read.druid.min.time=1622476800000 read.druid.max.time=1625673600000 #读取过去N天数据,最小值为3天(需要判断周期性) read.historical.days=7 #历史数据汇聚粒度为10分钟 historical.grad=10 #baseline生成方法 baseline.function=KalmanFilter #baseline时间1天 baseline.range.days=1 # 数据库Time格式 time.format=yyyy-MM-dd HH:mm:ss #算法参数 baseline.period.correlative.threshold=0.5 baseline.historical.ratio.threshold=0.1 baseline.historical.sparse.fill.percentile=0.95 baseline.rational.percentile=0.95 #Kalman Filter baseline.kalman.q=0.000001 baseline.kalman.r=0.002 # 每更新1000个记录打印log log.write.count=10000 # FOR TEST generate.batch.size=1