修改周期行计算方式

This commit is contained in:
yinjiangyi
2021-10-27 20:12:14 +08:00
parent cb6b694106
commit f2b568e354
2 changed files with 32 additions and 31 deletions

View File

@@ -39,7 +39,7 @@ public class BaselineSingleThread extends Thread {
private final CountDownLatch countDownLatch;
private final ArrayList<Integer> frequencyBinCounter = new ArrayList<>(Collections.nCopies(ApplicationConfig.MONITOR_FREQUENCY_BIN_NUM, 0));
private final ArrayList<Integer> generateTypeCounter = new ArrayList<>(Collections.nCopies(3, 0));
private final ArrayList<Integer> generateTypeCounter = new ArrayList<>(Collections.nCopies(2, 0));
private int discardBaselineCounter = 0;
private ArrayList<String> discardIpList = new ArrayList<>();

View File

@@ -3,10 +3,13 @@ package cn.mesalab.utils;
import cn.mesalab.config.ApplicationConfig;
import cn.mesalab.dao.DruidData;
import com.google.common.collect.Lists;
import com.sun.istack.internal.NotNull;
import org.jfree.util.Log;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.lang.NonNull;
import javax.annotation.Nonnull;
import java.io.BufferedReader;
import java.io.FileReader;
import java.time.Duration;
@@ -21,9 +24,6 @@ import java.util.*;
*/
public class SeriesUtils {
private static final Logger LOG = LoggerFactory.getLogger(SeriesUtils.class);
private static DruidData druidData = new DruidData();
public static List<Map<String, Object>> readCsvToList(String filePath) {
List<Map<String, Object>> list = new ArrayList<Map<String, Object>>();
@@ -100,38 +100,39 @@ public class SeriesUtils {
* @return
*/
public static Boolean isPeriod(List<Integer> historicalSeries){
Boolean result = true;
boolean result = true;
List<List<Integer>> partitions = Lists.partition(historicalSeries, 24*60/ApplicationConfig.HISTORICAL_GRAD);
List<Integer> aggregatedPart = Arrays.asList();
try{
aggregatedPart = columnAverage(partitions.subList(0, ApplicationConfig.READ_HISTORICAL_DAYS-1));
} catch (IndexOutOfBoundsException e){
Log.error("历史");
}
// Pearson corrcoef
double pearsonCorrelationScore = getPearsonCorrelationScore(aggregatedPart.stream().mapToInt(Integer::valueOf).toArray(),
partitions.get(partitions.size() - 1).stream().mapToInt(Integer::valueOf).toArray());
int size = partitions.size();
ArrayList<Double> corrScores = new ArrayList<>();
for(int i = 0; i < size; i ++){
for(int j = i+1; j < size; j ++){
corrScores.add(getPearsonCorrelationScore(partitions.get(i).stream().mapToDouble(Number::doubleValue).toArray(),
partitions.get(j).stream().mapToDouble(Integer::valueOf).toArray()));
}
}
double pearsonCorrelationScore = corrScores.stream().mapToDouble(Number::doubleValue).average().orElse(0.0);
if (pearsonCorrelationScore < ApplicationConfig.BASELINE_PERIOD_CORR_THRE){
result=false;
}
return result;
}
public static double getPearsonCorrelationScore(int[] xData, int[] yData) {
public static double getPearsonCorrelationScore(double[] xData, double[] yData) {
if (xData.length != yData.length) {
Log.error("Pearson CorrelationScore 数组长度不相等!");
}
int xMeans;
int yMeans;
double xMeans;
double yMeans;
double numerator = 0;
double denominator = 0;
double result = 0;
// 拿到两个数据的平均值
xMeans = (int) getMeans(xData);
yMeans = (int) getMeans(yData);
xMeans = getMeans(xData);
yMeans = getMeans(yData);
// 计算皮尔逊系数的分子
numerator = generateNumerator(xData, xMeans, yData, yMeans);
// 计算皮尔逊系数的分母
@@ -143,7 +144,7 @@ public class SeriesUtils {
return result;
}
private static int generateNumerator(int[] xData, int xMeans, int[] yData, int yMeans) {
private static float generateNumerator(double[] xData, double xMeans, double[] yData, double yMeans) {
int numerator = 0;
for (int i = 0; i < xData.length; i++) {
numerator += (xData[i] - xMeans) * (yData[i] - yMeans);
@@ -151,22 +152,22 @@ public class SeriesUtils {
return numerator;
}
private static double generateDenomiator(int[] xData, int xMeans, int[] yData, int yMeans) {
private static double generateDenomiator(double[] xData, double xMeans, double[] yData, double yMeans) {
double xSum = 0.0;
for (int i = 0; i < xData.length; i++) {
xSum += (xData[i] - xMeans) * (xData[i] - xMeans);
for (double xDatum : xData) {
xSum += (xDatum - xMeans) * (xDatum - xMeans);
}
double ySum = 0.0;
for (int i = 0; i < yData.length; i++) {
ySum += (yData[i] - yMeans) * (yData[i] - yMeans);
for (double yDatum : yData) {
ySum += (yDatum - yMeans) * (yDatum - yMeans);
}
return Math.sqrt(xSum) * Math.sqrt(ySum);
}
private static double getMeans(int[] datas) {
double sum = 0.0;
for (int i = 0; i < datas.length; i++) {
sum += datas[i];
private static double getMeans(double[] datas) {
float sum = 0;
for (double data : datas) {
sum += data;
}
return sum / datas.length;
}
@@ -175,8 +176,8 @@ public class SeriesUtils {
ArrayList<Integer> averages = new ArrayList<>();
for(int i=0; i<list.get(0).size(); i++){
int columnSum = 0;
for(int j = 0; j< list.size(); j++){
columnSum += list.get(j).get(i);
for (List<Integer> integers : list) {
columnSum += integers.get(i);
}
averages.add(columnSum / list.size());
}