写入生成类型
This commit is contained in:
@@ -23,6 +23,8 @@ public class ApplicationConfig {
|
||||
public static final String TIME_FORMAT = ConfigUtils.getStringProperty("time.format");
|
||||
public static final String BASELINE_METRIC_TYPE = ConfigUtils.getStringProperty("baseline.metric.type");
|
||||
|
||||
public static final String HBASE_BASELINE_GENERATION_TYPE_SUFFIX = ConfigUtils.getStringProperty("hbase.baseline.generation.type.suffix");
|
||||
|
||||
public static final String DRUID_ATTACKTYPE_TCP_SYN_FLOOD = ConfigUtils.getStringProperty("druid.attacktype.tcpsynflood");
|
||||
public static final String DRUID_ATTACKTYPE_UDP_FLOOD = ConfigUtils.getStringProperty("druid.attacktype.udpflood");
|
||||
public static final String DRUID_ATTACKTYPE_ICMP_FLOOD = ConfigUtils.getStringProperty("druid.attacktype.icmpflood");
|
||||
|
||||
@@ -7,6 +7,8 @@ import cn.mesalab.utils.DruidUtils;
|
||||
import cn.mesalab.utils.HbaseUtils;
|
||||
import cn.mesalab.utils.RetryUtils;
|
||||
import cn.mesalab.utils.SeriesUtils;
|
||||
import io.vavr.Tuple;
|
||||
import io.vavr.Tuple2;
|
||||
import org.apache.calcite.avatica.AvaticaClientRuntimeException;
|
||||
import org.apache.calcite.avatica.AvaticaConnection;
|
||||
import org.apache.calcite.avatica.AvaticaStatement;
|
||||
@@ -86,9 +88,15 @@ public class BaselineSingleThread extends Thread {
|
||||
List<Map<String, Object>> ipDruidData = batchDruidData.get(ip).stream()
|
||||
.filter(i -> i.get(ApplicationConfig.DRUID_ATTACKTYPE_COLUMN_NAME).equals(attackType)).collect(Collectors.toList());
|
||||
// baseline生成
|
||||
int[] ipBaseline = generateSingleIpBaseline(ip, ipDruidData);
|
||||
Tuple2<int[], Integer> tuple = generateSingleIpBaseline(ip, ipDruidData);
|
||||
if(tuple!=null){
|
||||
int[] ipBaseline = tuple._1;
|
||||
int generateType = tuple._2;
|
||||
if ((ipBaseline!= null ) && (ip.length()>0)){
|
||||
hbaseUtils.cachedInPut(putList, ip, ipBaseline, attackType, ApplicationConfig.BASELINE_METRIC_TYPE);
|
||||
hbaseUtils.cachedInPut(putList, ip, generateType, attackType,
|
||||
ApplicationConfig.BASELINE_METRIC_TYPE + "_" + ApplicationConfig.HBASE_BASELINE_GENERATION_TYPE_SUFFIX);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -119,24 +127,36 @@ public class BaselineSingleThread extends Thread {
|
||||
}
|
||||
|
||||
/**
|
||||
* 单ip baseline生成逻辑
|
||||
*
|
||||
* @return baseline序列,长度为 60/HISTORICAL_GRAD*24
|
||||
*/
|
||||
private int[] generateSingleIpBaseline(String ip, List<Map<String, Object>> ipDruidData){
|
||||
/**
|
||||
* 单ip baseline生成逻辑
|
||||
* @param ip
|
||||
* @param ipDruidData
|
||||
* @return baseline序列,长度为 60/HISTORICAL_GRAD*24;
|
||||
* baselineGenerationType:
|
||||
* 1: 高频IP
|
||||
* 2: 低频有周期IP
|
||||
* 3:其他类型IP, 采用百分位阈值基线
|
||||
*/
|
||||
private Tuple2<int[], Integer> generateSingleIpBaseline(String ip, List<Map<String, Object>> ipDruidData){
|
||||
if (ipDruidData.size()==0){
|
||||
return null;
|
||||
}
|
||||
|
||||
int baselineGenerationType = 0;
|
||||
int[] baselineArr = new int[baselinePointNum];
|
||||
|
||||
// 时间序列缺失值补0
|
||||
List<Map<String, Object>> completSeries = SeriesUtils.complementSeries(ipDruidData);
|
||||
|
||||
int[] baselineArr = new int[baselinePointNum];
|
||||
List<Integer>series = completSeries.stream().map(
|
||||
i -> Integer.valueOf(i.get(ApplicationConfig.BASELINE_METRIC_TYPE).toString())).collect(Collectors.toList());
|
||||
|
||||
// 判断ip出现频率
|
||||
if(ipDruidData.size()/(float)completSeries.size()>ApplicationConfig.BASELINE_HISTORICAL_FREQUENCY_THREAD){
|
||||
// 异常值剔除
|
||||
baselineGenerationType = 1;
|
||||
double exceptionPercentile = SeriesUtils.percentile(series, ApplicationConfig.BASELINE_EXECEPTION_PERCENTILE);
|
||||
double exceptionFillPercentile = SeriesUtils.percentile(series, ApplicationConfig.BASELINE_EXCECPTION_FILL_PERCENTILE);
|
||||
for(int i=0; i<series.size(); i++){
|
||||
@@ -146,25 +166,24 @@ public class BaselineSingleThread extends Thread {
|
||||
}
|
||||
// KF
|
||||
baselineArr = baselineFunction(series);
|
||||
// System.out.println("高频IP:" + ip + " origin:" + series + "\n baseline:" + Arrays.toString(baselineArr));
|
||||
} else {
|
||||
// 判断周期性
|
||||
if (SeriesUtils.isPeriod(series)){
|
||||
baselineGenerationType = 2;
|
||||
// KF
|
||||
baselineArr = baselineFunction(series);
|
||||
// System.out.println("低频周期IP:" + ip + " origin:" + series + "\n baseline:" + Arrays.toString(baselineArr));
|
||||
} else {
|
||||
baselineGenerationType = 3;
|
||||
// 百分位数
|
||||
int ipPercentile = SeriesUtils.percentile(
|
||||
ipDruidData.stream().map(i ->
|
||||
Integer.valueOf(i.get(ApplicationConfig.BASELINE_METRIC_TYPE).toString())).collect(Collectors.toList()),
|
||||
ApplicationConfig.BASELINE_RATIONAL_PERCENTILE);
|
||||
Arrays.fill(baselineArr, ipPercentile);
|
||||
// System.out.println("其他IP:" + ip + " origin:" + series + "\n baseline:" + Arrays.toString(baselineArr));
|
||||
}
|
||||
}
|
||||
|
||||
return baselineArr;
|
||||
return new Tuple2<>(baselineArr, baselineGenerationType);
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@@ -1 +1 @@
|
||||
package cn.mesalab.utils;
|
||||
package cn.mesalab.utils;
|
||||
@@ -23,7 +23,7 @@ read.druid.min.time=1625414400000
|
||||
#07-08
|
||||
read.druid.max.time=1625673600000
|
||||
|
||||
#字段映射
|
||||
#Druid字段映射
|
||||
druid.attacktype.tcpsynflood=TCP SYN Flood
|
||||
druid.attacktype.udpflood=UDP Flood
|
||||
druid.attacktype.icmpflood=ICMP Flood
|
||||
@@ -34,6 +34,9 @@ druid.columnname.recvtime=__time
|
||||
druid.columnname.partition.num=partition_num
|
||||
baseline.metric.type=session_rate
|
||||
|
||||
#Hbase字段映射
|
||||
hbase.baseline.generation.type.suffix=baseline_type
|
||||
|
||||
#数据情况
|
||||
#读取历史N天数据,最小值为3天(需要判断周期性)
|
||||
read.historical.days=3
|
||||
|
||||
Reference in New Issue
Block a user