to get help
This commit is contained in:
@@ -6,6 +6,7 @@ import cn.mesalab.utils.DruidUtils;
|
||||
import io.vavr.Tuple;
|
||||
import io.vavr.Tuple2;
|
||||
import org.apache.calcite.avatica.AvaticaConnection;
|
||||
import org.apache.calcite.avatica.AvaticaStatement;
|
||||
import org.apache.commons.lang.StringUtils;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
@@ -22,69 +23,79 @@ import java.util.stream.Collectors;
|
||||
/**
|
||||
* @author yjy
|
||||
* @version 1.0
|
||||
* Druid 数据库操作
|
||||
* @date 2021/7/23 4:56 下午
|
||||
*/
|
||||
public class DruidData {
|
||||
|
||||
private static final Logger LOG = LoggerFactory.getLogger(DruidData.class);
|
||||
private static DruidData druidData;
|
||||
|
||||
private AvaticaConnection connection;
|
||||
|
||||
{
|
||||
try {
|
||||
connection = DruidUtils.getConn();
|
||||
} catch (SQLException exception) {
|
||||
exception.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
private AvaticaStatement statement;
|
||||
private String timeFilter = ApplicationConfig.DRUID_RECVTIME_COLUMN_NAME
|
||||
+ " >= MILLIS_TO_TIMESTAMP(" + getTimeLimit()._2
|
||||
+ ") AND " + ApplicationConfig.DRUID_RECVTIME_COLUMN_NAME
|
||||
+ " < MILLIS_TO_TIMESTAMP(" + getTimeLimit()._1 + ")";
|
||||
|
||||
|
||||
{
|
||||
connectionInit();
|
||||
}
|
||||
|
||||
/**
|
||||
* 连接初始化
|
||||
*/
|
||||
private void connectionInit(){
|
||||
try {
|
||||
connection = DruidUtils.getConn();
|
||||
statement = connection.createStatement();
|
||||
statement.setQueryTimeout(0);
|
||||
|
||||
} catch (SQLException exception) {
|
||||
exception.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 获取实例
|
||||
* @return DruidData实例
|
||||
*/
|
||||
public static DruidData getInstance() {
|
||||
druidData = new DruidData();
|
||||
return druidData;
|
||||
}
|
||||
|
||||
/**
|
||||
* 获取distinct server ip
|
||||
* @return ArrayList<String> ip列表
|
||||
*/
|
||||
public ArrayList<String> getServerIpList() {
|
||||
Long startQueryIPLIstTime = System.currentTimeMillis();
|
||||
ArrayList<String> serverIPs = new ArrayList<String>();
|
||||
Long startQueryIpLIstTime = System.currentTimeMillis();
|
||||
ArrayList<String> serverIps = new ArrayList<String>();
|
||||
String sql = "SELECT distinct " + ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME
|
||||
+ " FROM " + ApplicationConfig.DRUID_TABLE
|
||||
+ " WHERE " + timeFilter;// FOR TEST
|
||||
+ " WHERE " + timeFilter
|
||||
+ " LIMIT 10";// FOR TEST
|
||||
try{
|
||||
ResultSet resultSet = DruidUtils.executeQuery(connection,sql);
|
||||
ResultSet resultSet = DruidUtils.executeQuery(statement,sql);
|
||||
while(resultSet.next()){
|
||||
String ip = resultSet.getString(ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME);
|
||||
serverIPs.add(ip);
|
||||
serverIps.add(ip);
|
||||
}
|
||||
} catch (Exception e){
|
||||
e.printStackTrace();
|
||||
}
|
||||
Long endQueryIPListTime = System.currentTimeMillis();
|
||||
LOG.info("性能测试:ip list查询耗时——"+(endQueryIPListTime-startQueryIPLIstTime));
|
||||
Long endQueryIpListTime = System.currentTimeMillis();
|
||||
LOG.info("性能测试:ip list查询耗时——"+(endQueryIpListTime-startQueryIpLIstTime));
|
||||
|
||||
return serverIPs;
|
||||
}
|
||||
|
||||
public List<Map<String, Object>> getTimeSeriesData(List<Map<String, Object>> allData, String ip, String attackType){
|
||||
List<Map<String, Object>> rsList = new ArrayList<>();
|
||||
try{
|
||||
rsList = allData.stream().
|
||||
filter(i->((i.get(ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME).equals(ip))
|
||||
)&&(i.get(ApplicationConfig.DRUID_ATTACKTYPE_COLUMN_NAME).equals(attackType)))
|
||||
.collect(Collectors.toList());
|
||||
} catch (NullPointerException e){
|
||||
}
|
||||
return rsList;
|
||||
return serverIps;
|
||||
}
|
||||
|
||||
/**
|
||||
* 从Druid读取目标IP相关数据
|
||||
* @param ipList ip列表
|
||||
* @return 数据库读取结果
|
||||
*/
|
||||
public List<Map<String, Object>> readFromDruid(List<String> ipList){
|
||||
List<Map<String, Object>> rsList = null;
|
||||
ipList = ipList.stream().map( ip -> "\'"+ip+"\'").collect(Collectors.toList());
|
||||
@@ -98,7 +109,7 @@ public class DruidData {
|
||||
+ " IN " + ipString
|
||||
+ " AND " + timeFilter;
|
||||
try{
|
||||
ResultSet resultSet = DruidUtils.executeQuery(connection,sql);
|
||||
ResultSet resultSet = DruidUtils.executeQuery(statement, sql);
|
||||
ResultSetToListService service = new ResultSetToListServiceImp();
|
||||
rsList = service.selectAll(resultSet);
|
||||
} catch (Exception e){
|
||||
@@ -107,6 +118,29 @@ public class DruidData {
|
||||
return rsList;
|
||||
}
|
||||
|
||||
/**
|
||||
* 从数据库读取结果中筛选指定ip的指定攻击类型的数据
|
||||
* @param allData 数据库读取结果
|
||||
* @param ip 指定ip
|
||||
* @param attackType 指定攻击类型
|
||||
* @return 筛选结果
|
||||
*/
|
||||
public List<Map<String, Object>> getTimeSeriesData(List<Map<String, Object>> allData, String ip, String attackType){
|
||||
List<Map<String, Object>> rsList = new ArrayList<>();
|
||||
try{
|
||||
rsList = allData.stream().
|
||||
filter(i->((i.get(ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME).equals(ip))
|
||||
)&&(i.get(ApplicationConfig.DRUID_ATTACKTYPE_COLUMN_NAME).equals(attackType)))
|
||||
.collect(Collectors.toList());
|
||||
} catch (NullPointerException e){
|
||||
}
|
||||
return rsList;
|
||||
}
|
||||
|
||||
/**
|
||||
* 计算查询时间范围,可指定时间范围(测试)或使用默认配置
|
||||
* @return 时间范围起始点和终止点
|
||||
*/
|
||||
public Tuple2<Long, Long> getTimeLimit(){
|
||||
long maxTime = 0L;
|
||||
long minTime = 0L;
|
||||
@@ -140,6 +174,9 @@ public class DruidData {
|
||||
return getCurrentDay(0);
|
||||
}
|
||||
|
||||
/**
|
||||
* 关闭当前DruidData
|
||||
*/
|
||||
public void closeConn(){
|
||||
try {
|
||||
DruidUtils.closeConnection();
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
package cn.mesalab.main;
|
||||
|
||||
import cn.mesalab.service.BaselineGeneration;
|
||||
import sun.rmi.runtime.Log;
|
||||
|
||||
/**
|
||||
* @author yjy
|
||||
|
||||
@@ -2,7 +2,7 @@ package cn.mesalab.service;
|
||||
|
||||
import cn.mesalab.config.ApplicationConfig;
|
||||
import cn.mesalab.dao.DruidData;
|
||||
import cn.mesalab.service.BaselineService.KalmanFilter;
|
||||
import cn.mesalab.service.algorithm.KalmanFilter;
|
||||
import cn.mesalab.utils.HbaseUtils;
|
||||
import cn.mesalab.utils.SeriesUtils;
|
||||
import com.google.common.collect.Lists;
|
||||
@@ -21,6 +21,7 @@ import java.util.stream.Collectors;
|
||||
/**
|
||||
* @author yjy
|
||||
* @version 1.0
|
||||
* baseline生成及写入
|
||||
* @date 2021/7/23 5:38 下午
|
||||
*/
|
||||
public class BaselineGeneration {
|
||||
@@ -37,18 +38,22 @@ public class BaselineGeneration {
|
||||
ApplicationConfig.DRUID_ATTACKTYPE_UDP_FLOOD,
|
||||
ApplicationConfig.DRUID_ATTACKTYPE_DNS_AMPL
|
||||
);
|
||||
private static final Integer BASELINE_POINT_NUM = ApplicationConfig.BASELINE_RANGE_DAYS * 24 * (60/ApplicationConfig.HISTORICAL_GRAD);
|
||||
private static final Integer BASELINE_POINT_NUM =
|
||||
ApplicationConfig.BASELINE_RANGE_DAYS * 24 * (60/ApplicationConfig.HISTORICAL_GRAD);
|
||||
|
||||
/**
|
||||
* 程序执行
|
||||
*/
|
||||
public static void perform() {
|
||||
long start = System.currentTimeMillis();
|
||||
|
||||
druidData = DruidData.getInstance();
|
||||
hbaseUtils = HbaseUtils.getInstance();
|
||||
hbaseTable = hbaseUtils.getHbaseTable();
|
||||
|
||||
LOG.info("Druid 成功建立连接");
|
||||
|
||||
try{
|
||||
// baseline生成并写入
|
||||
generateBaselinesThread();
|
||||
|
||||
long last = System.currentTimeMillis();
|
||||
@@ -64,10 +69,12 @@ public class BaselineGeneration {
|
||||
System.exit(0);
|
||||
}
|
||||
|
||||
/**
|
||||
* 多线程baseline生成入口
|
||||
* @throws InterruptedException
|
||||
*/
|
||||
private static void generateBaselinesThread() throws InterruptedException {
|
||||
int threadNum = Runtime.getRuntime().availableProcessors();
|
||||
// int threadNum = 10;
|
||||
|
||||
|
||||
ThreadFactory namedThreadFactory = new ThreadFactoryBuilder()
|
||||
.setNameFormat("baseline-demo-%d").build();
|
||||
@@ -82,15 +89,13 @@ public class BaselineGeneration {
|
||||
namedThreadFactory,
|
||||
new ThreadPoolExecutor.AbortPolicy());
|
||||
|
||||
// baseline 生成及写入
|
||||
// 耗时测试
|
||||
Long startQueryIPList = System.currentTimeMillis();
|
||||
// IP列表获取
|
||||
ArrayList<String> destinationIps = druidData.getServerIpList();
|
||||
Long endQueryIPList = System.currentTimeMillis();
|
||||
|
||||
LOG.info("共查询到服务端ip " +destinationIps.size() + " 个");
|
||||
LOG.info("Baseline batch 大小: " + ApplicationConfig.GENERATE_BATCH_SIZE);
|
||||
|
||||
// 分批进行IP baseline生成和处理
|
||||
List<List<String>> batchIpLists = Lists.partition(destinationIps, ApplicationConfig.GENERATE_BATCH_SIZE);
|
||||
for (List<String> batchIps: batchIpLists){
|
||||
if(batchIps.size()>0){
|
||||
@@ -102,27 +107,24 @@ public class BaselineGeneration {
|
||||
executor.awaitTermination(10L, TimeUnit.HOURS);
|
||||
}
|
||||
|
||||
/**
|
||||
* 批量生成IP baseline
|
||||
* @param ipList ip列表
|
||||
*/
|
||||
public static void generateBaselines(List<String> ipList){
|
||||
Long startGenerationBaselines= System.currentTimeMillis();
|
||||
Long startReadDruidData = System.currentTimeMillis();
|
||||
|
||||
druidData = DruidData.getInstance();
|
||||
batchDruidData = druidData.readFromDruid(ipList);
|
||||
Long endReadDruidData = System.currentTimeMillis();
|
||||
//LOG.info("读取Druid数据耗时:"+(endReadDruidData-startReadDruidData));
|
||||
|
||||
List<Put> putList = new ArrayList<>();
|
||||
for(String attackType: attackTypeList){
|
||||
for(String ip: ipList){
|
||||
int[] ipBaseline = generateSingleIpBaseline(ip, attackType);
|
||||
if (!(ipBaseline ==null)){
|
||||
if (ipBaseline!= null){
|
||||
putList = hbaseUtils.cachedInPut(putList, ip, ipBaseline, attackType, ApplicationConfig.BASELINE_METRIC_TYPE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Long endGenerationBaselines= System.currentTimeMillis();
|
||||
//LOG.info("BaselineGeneration耗时:"+(endGenerationBaselines-endReadDruidData));
|
||||
|
||||
try {
|
||||
hbaseTable.put(putList);
|
||||
LOG.info("Baseline 线程 " + Thread.currentThread().getId() + " 成功写入Baseline条数共计 " + putList.size());
|
||||
@@ -130,25 +132,27 @@ public class BaselineGeneration {
|
||||
e.printStackTrace();
|
||||
}
|
||||
|
||||
Long endWriteTime = System.currentTimeMillis();
|
||||
//LOG.info("BaselineWriteIn耗时:"+(endWriteTime-endGenerationBaselines));
|
||||
druidData.closeConn();
|
||||
}
|
||||
|
||||
/**
|
||||
* 单ip baseline生成逻辑
|
||||
* @param ip ip
|
||||
* @param attackType 攻击类型
|
||||
* @return baseline序列,长度为 60/HISTORICAL_GRAD*24
|
||||
*/
|
||||
private static int[] generateSingleIpBaseline(String ip, String attackType){
|
||||
// 查询
|
||||
Long startQuerySingleIPTime = System.currentTimeMillis();
|
||||
List<Map<String, Object>> originSeries = druidData.getTimeSeriesData(batchDruidData, ip, attackType);
|
||||
|
||||
if (originSeries.size()==0){
|
||||
return null;
|
||||
}
|
||||
|
||||
Long endQuerySingleIPTime = System.currentTimeMillis();
|
||||
|
||||
// 时间序列缺失值补0
|
||||
List<Map<String, Object>> completSeries = SeriesUtils.complementSeries(originSeries);
|
||||
|
||||
int[] baselineArr = new int[completSeries.size()];
|
||||
int[] baselineArr = new int[BASELINE_POINT_NUM];
|
||||
List<Integer>series = completSeries.stream().map(
|
||||
i -> Integer.valueOf(i.get(ApplicationConfig.BASELINE_METRIC_TYPE).toString())).collect(Collectors.toList());
|
||||
|
||||
@@ -173,14 +177,14 @@ public class BaselineGeneration {
|
||||
}
|
||||
}
|
||||
|
||||
Long endGenerateSingleIPTime = System.currentTimeMillis();
|
||||
//LOG.info("性能测试:单个baseline生成耗时——"+(endGenerateSingleIPTime-endQuerySingleIPTime));
|
||||
//System.out.println(ip);
|
||||
//System.out.println(attackType + Arrays.toString(baselineArr));
|
||||
|
||||
return baselineArr;
|
||||
}
|
||||
|
||||
/**
|
||||
* baseline 生成算法
|
||||
* @param timeSeries 输入序列
|
||||
* @return 输出序列
|
||||
*/
|
||||
private static int[] baselineFunction(List<Integer> timeSeries){
|
||||
int[] result;
|
||||
switch (ApplicationConfig.BASELINE_FUNCTION){
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
package cn.mesalab.service.BaselineService;
|
||||
package cn.mesalab.service.algorithm;
|
||||
|
||||
import cn.mesalab.config.ApplicationConfig;
|
||||
|
||||
@@ -8,12 +8,11 @@ import java.util.List;
|
||||
/**
|
||||
* @author yjy
|
||||
* @version 1.0
|
||||
* kalman滤波器
|
||||
* @date 2021/7/25 1:42 下午
|
||||
*/
|
||||
|
||||
public class KalmanFilter {
|
||||
|
||||
/**Kalman Filter*/
|
||||
private Integer predict;
|
||||
private Integer current;
|
||||
private Integer estimate;
|
||||
@@ -29,6 +28,7 @@ public class KalmanFilter {
|
||||
}
|
||||
|
||||
public void initial(){
|
||||
// TODO 调整
|
||||
pdelt = 1;
|
||||
mdelt = 1;
|
||||
}
|
||||
@@ -54,9 +54,7 @@ public class KalmanFilter {
|
||||
|
||||
|
||||
public void forcast(List<Integer> historicalSeries, Integer length){
|
||||
// 初始值计算
|
||||
int oldvalue = (historicalSeries.stream().mapToInt(Integer::intValue).sum())/historicalSeries.size();
|
||||
// 滤波
|
||||
smoothSeries = new ArrayList<Integer>();
|
||||
for(int i = 0; i < historicalSeries.size(); i++){
|
||||
int value = historicalSeries.get(i);
|
||||
@@ -19,6 +19,7 @@ public class DruidUtils {
|
||||
private static ThreadLocal<AvaticaConnection> threadLocal = new ThreadLocal<AvaticaConnection>();
|
||||
|
||||
private static final String DRUID_URL = ApplicationConfig.DRUID_URL;
|
||||
private static AvaticaStatement statement = null;
|
||||
|
||||
/**
|
||||
* 打开连接
|
||||
@@ -46,9 +47,8 @@ public class DruidUtils {
|
||||
/**
|
||||
* 根据sql查询结果
|
||||
*/
|
||||
public static ResultSet executeQuery (AvaticaConnection connection, String sql) throws SQLException{
|
||||
AvaticaStatement statement = connection.createStatement();
|
||||
ResultSet resultSet = statement.executeQuery(sql);
|
||||
public static ResultSet executeQuery (AvaticaStatement statement, String sql) throws SQLException{
|
||||
ResultSet resultSet = statement.executeQuery(sql);
|
||||
return resultSet;
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user