修改多线程组织结构

This commit is contained in:
yinjiangyi
2021-08-03 19:33:13 +08:00
parent 5f7f6a77fb
commit 44584b1139
11 changed files with 516 additions and 151 deletions

View File

@@ -32,10 +32,6 @@ public class DruidData {
private static DruidData druidData;
private AvaticaConnection connection;
private AvaticaStatement statement;
private String timeFilter = ApplicationConfig.DRUID_RECVTIME_COLUMN_NAME
+ " >= MILLIS_TO_TIMESTAMP(" + getTimeLimit()._2
+ ") AND " + ApplicationConfig.DRUID_RECVTIME_COLUMN_NAME
+ " < MILLIS_TO_TIMESTAMP(" + getTimeLimit()._1 + ")";
{
@@ -69,13 +65,13 @@ public class DruidData {
* 获取distinct server ip
* @return ArrayList<String> ip列表
*/
public ArrayList<String> getServerIpList() {
public static ArrayList<String> getServerIpList(AvaticaStatement statement, String timeFilter) {
Long startQueryIpLIstTime = System.currentTimeMillis();
ArrayList<String> serverIps = new ArrayList<String>();
String sql = "SELECT distinct " + ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME
+ " FROM " + ApplicationConfig.DRUID_TABLE
+ " WHERE " + timeFilter
+ " LIMIT 1000";// FOR TEST
+ " LIMIT 200";// FOR TEST
try{
ResultSet resultSet = DruidUtils.executeQuery(statement,sql);
while(resultSet.next()){
@@ -96,7 +92,7 @@ public class DruidData {
* @param ipList ip列表
* @return 数据库读取结果
*/
public List<Map<String, Object>> readFromDruid(List<String> ipList){
public static List<Map<String, Object>> readFromDruid(AvaticaConnection connection, AvaticaStatement statement, List<String> ipList, String timeFilter){
List<Map<String, Object>> rsList = null;
ipList = ipList.stream().map( ip -> "\'"+ip+"\'").collect(Collectors.toList());
String ipString = "(" + StringUtils.join(ipList, ",").toString() + ")";
@@ -125,7 +121,7 @@ public class DruidData {
* @param attackType 指定攻击类型
* @return 筛选结果
*/
public List<Map<String, Object>> getTimeSeriesData(List<Map<String, Object>> allData, String ip, String attackType){
public static List<Map<String, Object>> getTimeSeriesData(List<Map<String, Object>> allData, String ip, String attackType){
List<Map<String, Object>> rsList = new ArrayList<>();
try{
rsList = allData.stream().
@@ -141,7 +137,7 @@ public class DruidData {
* 计算查询时间范围,可指定时间范围(测试)或使用默认配置
* @return 时间范围起始点和终止点
*/
public Tuple2<Long, Long> getTimeLimit(){
public static Tuple2<Long, Long> getTimeLimit(){
long maxTime = 0L;
long minTime = 0L;
switch(ApplicationConfig.DRUID_TIME_LIMIT_TYPE){
@@ -159,7 +155,7 @@ public class DruidData {
return Tuple.of(maxTime, minTime);
}
private long getCurrentDay(int bias) {
private static long getCurrentDay(int bias) {
Calendar calendar = Calendar.getInstance();
calendar.set(Calendar.DAY_OF_YEAR, calendar.get(Calendar.DAY_OF_YEAR) + bias);
calendar.set(Calendar.HOUR_OF_DAY, 0);
@@ -170,7 +166,7 @@ public class DruidData {
return calendar.getTimeInMillis();
}
private long getCurrentDay(){
private static long getCurrentDay(){
return getCurrentDay(0);
}

View File

@@ -1,7 +1,6 @@
package cn.mesalab.main;
import cn.mesalab.service.BaselineGeneration;
import sun.rmi.runtime.Log;
/**
* @author yjy
@@ -10,6 +9,6 @@ import sun.rmi.runtime.Log;
*/
public class BaselineApplication {
public static void main(String[] args) {
BaselineGeneration.perform();
new BaselineGeneration().perform();
}
}

View File

@@ -2,21 +2,19 @@ package cn.mesalab.service;
import cn.mesalab.config.ApplicationConfig;
import cn.mesalab.dao.DruidData;
import cn.mesalab.service.algorithm.KalmanFilter;
import cn.mesalab.utils.DruidUtils;
import cn.mesalab.utils.HbaseUtils;
import cn.mesalab.utils.SeriesUtils;
import com.google.common.collect.Lists;
import com.google.common.util.concurrent.ThreadFactoryBuilder;
import org.apache.commons.math3.stat.StatUtils;
import org.apache.hadoop.hbase.client.Put;
import org.apache.calcite.avatica.AvaticaConnection;
import org.apache.calcite.avatica.AvaticaStatement;
import org.apache.hadoop.hbase.client.Table;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
import java.sql.SQLException;
import java.util.*;
import java.util.concurrent.*;
import java.util.stream.Collectors;
/**
* @author yjy
@@ -27,10 +25,18 @@ import java.util.stream.Collectors;
public class BaselineGeneration {
private static final Logger LOG = LoggerFactory.getLogger(BaselineGeneration.class);
private static DruidData druidData;
private static HbaseUtils hbaseUtils;
private static Table hbaseTable;
private static List<Map<String, Object>> batchDruidData = new ArrayList<>();
private static AvaticaConnection druidConn = DruidUtils.getConn();
private static AvaticaStatement druidStatement;
static {
try {
druidStatement = DruidUtils.getStatement(druidConn);
} catch (SQLException exception) {
exception.printStackTrace();
}
}
private static Table hbaseTable = HbaseUtils.getInstance().getHbaseTable();
private static List<String> attackTypeList = Arrays.asList(
ApplicationConfig.DRUID_ATTACKTYPE_TCP_SYN_FLOOD,
@@ -41,17 +47,17 @@ public class BaselineGeneration {
private static final Integer BASELINE_POINT_NUM =
ApplicationConfig.BASELINE_RANGE_DAYS * 24 * (60/ApplicationConfig.HISTORICAL_GRAD);
private static String timeFilter = ApplicationConfig.DRUID_RECVTIME_COLUMN_NAME
+ " >= MILLIS_TO_TIMESTAMP(" + DruidData.getTimeLimit()._2
+ ") AND " + ApplicationConfig.DRUID_RECVTIME_COLUMN_NAME
+ " < MILLIS_TO_TIMESTAMP(" + DruidData.getTimeLimit()._1 + ")";
/**
* 程序执行
*/
public static void perform() {
public void perform() {
long start = System.currentTimeMillis();
druidData = DruidData.getInstance();
hbaseUtils = HbaseUtils.getInstance();
hbaseTable = hbaseUtils.getHbaseTable();
LOG.info("Druid 成功建立连接");
try{
// baseline生成并写入
generateBaselinesThread();
@@ -59,7 +65,7 @@ public class BaselineGeneration {
long last = System.currentTimeMillis();
LOG.warn("运行时间:" + (last - start));
druidData.closeConn();
druidConn.close();
hbaseTable.close();
LOG.info("Druid 关闭连接");
@@ -73,7 +79,7 @@ public class BaselineGeneration {
* 多线程baseline生成入口
* @throws InterruptedException
*/
private static void generateBaselinesThread() throws InterruptedException {
private void generateBaselinesThread() throws InterruptedException {
int threadNum = Runtime.getRuntime().availableProcessors();
ThreadFactory namedThreadFactory = new ThreadFactoryBuilder()
@@ -90,16 +96,26 @@ public class BaselineGeneration {
new ThreadPoolExecutor.AbortPolicy());
// IP列表获取
ArrayList<String> destinationIps = druidData.getServerIpList();
ArrayList<String> destinationIps = DruidData.getServerIpList(druidStatement, timeFilter);
LOG.info("共查询到服务端ip " +destinationIps.size() + "");
LOG.info("Baseline batch 大小: " + ApplicationConfig.GENERATE_BATCH_SIZE);
// 分批进行IP baseline生成和处理
List<List<String>> batchIpLists = Lists.partition(destinationIps, ApplicationConfig.GENERATE_BATCH_SIZE);
for (List<String> batchIps: batchIpLists){
if(batchIps.size()>0){
executor.execute(() -> generateBaselines(batchIps));
BaselineSingleThread testForInsider = new BaselineSingleThread(
batchIps,
druidConn,
druidStatement,
hbaseTable,
attackTypeList,
BASELINE_POINT_NUM,
timeFilter
);
executor.execute(testForInsider);
}
}
@@ -107,100 +123,4 @@ public class BaselineGeneration {
executor.awaitTermination(10L, TimeUnit.HOURS);
}
/**
* 批量生成IP baseline
* @param ipList ip列表
*/
public static void generateBaselines(List<String> ipList){
druidData = DruidData.getInstance();
batchDruidData = druidData.readFromDruid(ipList);
List<Put> putList = new ArrayList<>();
for(String attackType: attackTypeList){
for(String ip: ipList){
int[] ipBaseline = generateSingleIpBaseline(ip, attackType);
if (ipBaseline!= null){
putList = hbaseUtils.cachedInPut(putList, ip, ipBaseline, attackType, ApplicationConfig.BASELINE_METRIC_TYPE);
}
}
}
try {
hbaseTable.put(putList);
LOG.info("Baseline 线程 " + Thread.currentThread().getId() + " 成功写入Baseline条数共计 " + putList.size());
} catch (IOException e) {
e.printStackTrace();
}
druidData.closeConn();
}
/**
* 单ip baseline生成逻辑
* @param ip ip
* @param attackType 攻击类型
* @return baseline序列长度为 60/HISTORICAL_GRAD*24
*/
private static int[] generateSingleIpBaseline(String ip, String attackType){
// 查询
List<Map<String, Object>> originSeries = druidData.getTimeSeriesData(batchDruidData, ip, attackType);
if (originSeries.size()==0){
return null;
}
// 时间序列缺失值补0
List<Map<String, Object>> completSeries = SeriesUtils.complementSeries(originSeries);
int[] baselineArr = new int[BASELINE_POINT_NUM];
List<Integer>series = completSeries.stream().map(
i -> Integer.valueOf(i.get(ApplicationConfig.BASELINE_METRIC_TYPE).toString())).collect(Collectors.toList());
// 判断ip出现频率
if(originSeries.size()/(float)completSeries.size()>ApplicationConfig.BASELINE_HISTORICAL_RATIO){
// 高频率
double percentile = StatUtils.percentile(series.stream().mapToDouble(Double::valueOf).toArray(),
ApplicationConfig.BASELINE_SPARSE_FILL_PERCENTILE);
Arrays.fill(baselineArr, (int)percentile);
baselineArr = baselineFunction(series);
} else {
// 判断周期性
if (SeriesUtils.isPeriod(series)){
baselineArr = baselineFunction(series);
} else {
int ipPercentile = SeriesUtils.percentile(
originSeries.stream().map(i ->
Integer.valueOf(i.get(ApplicationConfig.BASELINE_METRIC_TYPE).toString())).collect(Collectors.toList()),
ApplicationConfig.BASELINE_RATIONAL_PERCENTILE);
Arrays.fill(baselineArr, ipPercentile);
}
}
return baselineArr;
}
/**
* baseline 生成算法
* @param timeSeries 输入序列
* @return 输出序列
*/
private static int[] baselineFunction(List<Integer> timeSeries){
int[] result;
switch (ApplicationConfig.BASELINE_FUNCTION){
case "KalmanFilter":
KalmanFilter kalmanFilter = new KalmanFilter();
kalmanFilter.forcast(timeSeries, BASELINE_POINT_NUM);
result = kalmanFilter.getForecastSeries().stream().mapToInt(Integer::valueOf).toArray();
break;
default:
result = timeSeries.subList(0, BASELINE_POINT_NUM).stream().mapToInt(Integer::valueOf).toArray();
}
return result;
}
public static void main(String[] args) {
perform();
}
}

View File

@@ -0,0 +1,142 @@
package cn.mesalab.service;
import cn.mesalab.config.ApplicationConfig;
import cn.mesalab.dao.DruidData;
import cn.mesalab.service.algorithm.KalmanFilter;
import cn.mesalab.utils.HbaseUtils;
import cn.mesalab.utils.SeriesUtils;
import org.apache.calcite.avatica.AvaticaConnection;
import org.apache.calcite.avatica.AvaticaStatement;
import org.apache.commons.math3.stat.StatUtils;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Table;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
/**
* @author yjy
* @version 1.0
* @date 2021/8/3 6:18 下午
*/
public class BaselineSingleThread extends Thread {
private static final Logger LOG = LoggerFactory.getLogger(BaselineSingleThread.class);
private List<String> ipList;
private AvaticaConnection druidConn;
private AvaticaStatement druidStatement;
private Table hbaseTable;
private List<String> attackTypeList;
private Integer BASELINE_POINT_NUM;
private String timeFilter;
private List<Map<String, Object>> batchDruidData;
public BaselineSingleThread(
List<String> batchIpList,
AvaticaConnection druidConn,
AvaticaStatement druidStatement,
Table hbaseTable,
List<String> attackTypeList,
Integer BASELINE_POINT_NUM,
String timeFilter
){
this.ipList = batchIpList;
this.druidConn = druidConn;
this.druidStatement = druidStatement;
this.hbaseTable = hbaseTable;
this.attackTypeList = attackTypeList;
this.BASELINE_POINT_NUM = BASELINE_POINT_NUM;
this.timeFilter = timeFilter;
}
@Override
public void run(){
batchDruidData = DruidData.readFromDruid(druidConn, druidStatement, ipList, timeFilter);
List<Put> putList = new ArrayList<>();
for(String attackType: attackTypeList){
for(String ip: ipList){
int[] ipBaseline = generateSingleIpBaseline(ip, attackType);
if (ipBaseline!= null){
putList = HbaseUtils.cachedInPut(putList, ip, ipBaseline, attackType, ApplicationConfig.BASELINE_METRIC_TYPE);
}
}
}
try {
hbaseTable.put(putList);
LOG.info("Baseline 线程 " + Thread.currentThread().getId() + " 成功写入Baseline条数共计 " + putList.size());
} catch (IOException e) {
e.printStackTrace();
}
}
/**
* 单ip baseline生成逻辑
* @param ip ip
* @param attackType 攻击类型
* @return baseline序列长度为 60/HISTORICAL_GRAD*24
*/
private int[] generateSingleIpBaseline(String ip, String attackType){
// 查询
List<Map<String, Object>> originSeries = DruidData.getTimeSeriesData(batchDruidData, ip, attackType);
if (originSeries.size()==0){
return null;
}
// 时间序列缺失值补0
List<Map<String, Object>> completSeries = SeriesUtils.complementSeries(originSeries);
int[] baselineArr = new int[BASELINE_POINT_NUM];
List<Integer>series = completSeries.stream().map(
i -> Integer.valueOf(i.get(ApplicationConfig.BASELINE_METRIC_TYPE).toString())).collect(Collectors.toList());
// 判断ip出现频率
if(originSeries.size()/(float)completSeries.size()>ApplicationConfig.BASELINE_HISTORICAL_RATIO){
// 高频率
double percentile = StatUtils.percentile(series.stream().mapToDouble(Double::valueOf).toArray(),
ApplicationConfig.BASELINE_SPARSE_FILL_PERCENTILE);
Arrays.fill(baselineArr, (int)percentile);
baselineArr = baselineFunction(series);
} else {
// 判断周期性
if (SeriesUtils.isPeriod(series)){
baselineArr = baselineFunction(series);
} else {
int ipPercentile = SeriesUtils.percentile(
originSeries.stream().map(i ->
Integer.valueOf(i.get(ApplicationConfig.BASELINE_METRIC_TYPE).toString())).collect(Collectors.toList()),
ApplicationConfig.BASELINE_RATIONAL_PERCENTILE);
Arrays.fill(baselineArr, ipPercentile);
}
}
return baselineArr;
}
/**
* baseline 生成算法
* @param timeSeries 输入序列
* @return 输出序列
*/
private int[] baselineFunction(List<Integer> timeSeries){
int[] result;
switch (ApplicationConfig.BASELINE_FUNCTION){
case "KalmanFilter":
KalmanFilter kalmanFilter = new KalmanFilter();
kalmanFilter.forcast(timeSeries, BASELINE_POINT_NUM);
result = kalmanFilter.getForecastSeries().stream().mapToInt(Integer::valueOf).toArray();
break;
default:
result = timeSeries.subList(0, BASELINE_POINT_NUM).stream().mapToInt(Integer::valueOf).toArray();
}
return result;
}
}

View File

@@ -19,16 +19,19 @@ public class DruidUtils {
private static ThreadLocal<AvaticaConnection> threadLocal = new ThreadLocal<AvaticaConnection>();
private static final String DRUID_URL = ApplicationConfig.DRUID_URL;
private static AvaticaStatement statement = null;
/**
* 打开连接
* @throws SQLException
*/
public static AvaticaConnection getConn() throws SQLException {
public static AvaticaConnection getConn() {
Properties properties = new Properties();
properties.setProperty("connectTimeout", String.valueOf(10*60*60));
AvaticaConnection connection = (AvaticaConnection) DriverManager.getConnection(DRUID_URL, properties);
AvaticaConnection connection = null;
try {
connection = (AvaticaConnection) DriverManager.getConnection(DRUID_URL, properties);
} catch (SQLException exception) {
exception.printStackTrace();
}
threadLocal.set(connection);
return connection;
}
@@ -48,8 +51,12 @@ public class DruidUtils {
* 根据sql查询结果
*/
public static ResultSet executeQuery (AvaticaStatement statement, String sql) throws SQLException{
ResultSet resultSet = statement.executeQuery(sql);
ResultSet resultSet = statement.executeQuery(sql);
return resultSet;
}
public static AvaticaStatement getStatement(AvaticaConnection conn) throws SQLException {
return conn.createStatement();
}
}

View File

@@ -1 +1 @@
package cn.mesalab.utils;
package cn.mesalab.utils;

View File

@@ -2,7 +2,6 @@ package cn.mesalab.utils;
import cn.mesalab.config.ApplicationConfig;
import cn.mesalab.dao.DruidData;
import cn.mesalab.service.BaselineGeneration;
import com.google.common.collect.Lists;
import org.jfree.util.Log;
import org.slf4j.Logger;
@@ -10,13 +9,11 @@ import org.slf4j.LoggerFactory;
import java.io.BufferedReader;
import java.io.FileReader;
import java.lang.reflect.Array;
import java.time.Duration;
import java.time.Instant;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.*;
import java.util.stream.Stream;
/**

View File

@@ -54,7 +54,7 @@ baseline.kalman.r=0.002
# 每更新1000个记录打印log
log.write.count=10000
# FOR TEST
generate.batch.size=10
generate.batch.size=100
# http client配置

View File

@@ -0,0 +1,206 @@
//package cn.mesalab.service;
//
//import cn.mesalab.config.ApplicationConfig;
//import cn.mesalab.dao.DruidData;
//import cn.mesalab.service.algorithm.KalmanFilter;
//import cn.mesalab.utils.HbaseUtils;
//import cn.mesalab.utils.SeriesUtils;
//import com.google.common.collect.Lists;
//import com.google.common.util.concurrent.ThreadFactoryBuilder;
//import org.apache.commons.math3.stat.StatUtils;
//import org.apache.hadoop.hbase.client.Put;
//import org.apache.hadoop.hbase.client.Table;
//import org.slf4j.Logger;
//import org.slf4j.LoggerFactory;
//
//import java.io.IOException;
//import java.util.*;
//import java.util.concurrent.*;
//import java.util.stream.Collectors;
//
///**
// * @author yjy
// * @version 1.0
// * baseline生成及写入
// * @date 2021/7/23 5:38 下午
// */
//public class BaselineGeneration {
// private static final Logger LOG = LoggerFactory.getLogger(BaselineGeneration.class);
//
// private static DruidData druidData;
// private static HbaseUtils hbaseUtils;
// private static Table hbaseTable;
// private static List<Map<String, Object>> batchDruidData = new ArrayList<>();
//
// private static List<String> attackTypeList = Arrays.asList(
// ApplicationConfig.DRUID_ATTACKTYPE_TCP_SYN_FLOOD,
// ApplicationConfig.DRUID_ATTACKTYPE_ICMP_FLOOD,
// ApplicationConfig.DRUID_ATTACKTYPE_UDP_FLOOD,
// ApplicationConfig.DRUID_ATTACKTYPE_DNS_AMPL
// );
// private static final Integer BASELINE_POINT_NUM =
// ApplicationConfig.BASELINE_RANGE_DAYS * 24 * (60/ApplicationConfig.HISTORICAL_GRAD);
//
// /**
// * 程序执行
// */
// public static void perform() {
// long start = System.currentTimeMillis();
//
// druidData = DruidData.getInstance();
// hbaseUtils = HbaseUtils.getInstance();
// hbaseTable = hbaseUtils.getHbaseTable();
// LOG.info("Druid 成功建立连接");
//
// try{
// // baseline生成并写入
// generateBaselinesThread();
//
// long last = System.currentTimeMillis();
// LOG.warn("运行时间:" + (last - start));
//
// druidData.closeConn();
// hbaseTable.close();
// LOG.info("Druid 关闭连接");
//
// } catch (Exception e){
// e.printStackTrace();
// }
// System.exit(0);
// }
//
// /**
// * 多线程baseline生成入口
// * @throws InterruptedException
// */
// private static void generateBaselinesThread() throws InterruptedException {
// int threadNum = Runtime.getRuntime().availableProcessors();
//
// ThreadFactory namedThreadFactory = new ThreadFactoryBuilder()
// .setNameFormat("baseline-demo-%d").build();
//
// // 创建线程池
// ThreadPoolExecutor executor = new ThreadPoolExecutor(
// threadNum,
// threadNum,
// 0L,
// TimeUnit.MILLISECONDS,
// new LinkedBlockingQueue<>(1024),
// namedThreadFactory,
// new ThreadPoolExecutor.AbortPolicy());
//
// // IP列表获取
// ArrayList<String> destinationIps = druidData.getServerIpList();
//
// LOG.info("共查询到服务端ip " +destinationIps.size() + " 个");
// LOG.info("Baseline batch 大小: " + ApplicationConfig.GENERATE_BATCH_SIZE);
//
// // 分批进行IP baseline生成和处理
// List<List<String>> batchIpLists = Lists.partition(destinationIps, ApplicationConfig.GENERATE_BATCH_SIZE);
// for (List<String> batchIps: batchIpLists){
// if(batchIps.size()>0){
// executor.execute(() -> generateBaselines(batchIps));
// }
// }
//
// executor.shutdown();
// executor.awaitTermination(10L, TimeUnit.HOURS);
// }
//
// /**
// * 批量生成IP baseline
// * @param ipList ip列表
// */
// public static void generateBaselines(List<String> ipList){
// druidData = DruidData.getInstance();
// batchDruidData = druidData.readFromDruid(ipList);
//
// List<Put> putList = new ArrayList<>();
// for(String attackType: attackTypeList){
// for(String ip: ipList){
// int[] ipBaseline = generateSingleIpBaseline(ip, attackType);
// if (ipBaseline!= null){
// putList = hbaseUtils.cachedInPut(putList, ip, ipBaseline, attackType, ApplicationConfig.BASELINE_METRIC_TYPE);
// }
// }
// }
//
// try {
// hbaseTable.put(putList);
// LOG.info("Baseline 线程 " + Thread.currentThread().getId() + " 成功写入Baseline条数共计 " + putList.size());
// } catch (IOException e) {
// e.printStackTrace();
// }
//
// druidData.closeConn();
// }
//
// /**
// * 单ip baseline生成逻辑
// * @param ip ip
// * @param attackType 攻击类型
// * @return baseline序列长度为 60/HISTORICAL_GRAD*24
// */
// private static int[] generateSingleIpBaseline(String ip, String attackType){
// // 查询
// List<Map<String, Object>> originSeries = druidData.getTimeSeriesData(batchDruidData, ip, attackType);
//
// if (originSeries.size()==0){
// return null;
// }
//
// // 时间序列缺失值补0
// List<Map<String, Object>> completSeries = SeriesUtils.complementSeries(originSeries);
//
// int[] baselineArr = new int[BASELINE_POINT_NUM];
// List<Integer>series = completSeries.stream().map(
// i -> Integer.valueOf(i.get(ApplicationConfig.BASELINE_METRIC_TYPE).toString())).collect(Collectors.toList());
//
// // 判断ip出现频率
// if(originSeries.size()/(float)completSeries.size()>ApplicationConfig.BASELINE_HISTORICAL_RATIO){
// // 高频率
// double percentile = StatUtils.percentile(series.stream().mapToDouble(Double::valueOf).toArray(),
// ApplicationConfig.BASELINE_SPARSE_FILL_PERCENTILE);
// Arrays.fill(baselineArr, (int)percentile);
// baselineArr = baselineFunction(series);
//
// } else {
// // 判断周期性
// if (SeriesUtils.isPeriod(series)){
// baselineArr = baselineFunction(series);
// } else {
// int ipPercentile = SeriesUtils.percentile(
// originSeries.stream().map(i ->
// Integer.valueOf(i.get(ApplicationConfig.BASELINE_METRIC_TYPE).toString())).collect(Collectors.toList()),
// ApplicationConfig.BASELINE_RATIONAL_PERCENTILE);
// Arrays.fill(baselineArr, ipPercentile);
// }
// }
//
// return baselineArr;
// }
//
// /**
// * baseline 生成算法
// * @param timeSeries 输入序列
// * @return 输出序列
// */
// private static int[] baselineFunction(List<Integer> timeSeries){
// int[] result;
// switch (ApplicationConfig.BASELINE_FUNCTION){
// case "KalmanFilter":
// KalmanFilter kalmanFilter = new KalmanFilter();
// kalmanFilter.forcast(timeSeries, BASELINE_POINT_NUM);
// result = kalmanFilter.getForecastSeries().stream().mapToInt(Integer::valueOf).toArray();
// break;
// default:
// result = timeSeries.subList(0, BASELINE_POINT_NUM).stream().mapToInt(Integer::valueOf).toArray();
// }
// return result;
// }
//
// public static void main(String[] args) {
// perform();
// }
//
//}

View File

@@ -37,18 +37,36 @@ public class HBaseTest {
Table table = conn.getTable(tableName);
DruidData druidData = DruidData.getInstance();
ArrayList<String> destinationIps = druidData.getServerIpList();
// DruidData druidData = DruidData.getInstance();
// ArrayList<String> destinationIps = druidData.getServerIpList();
List<String> ips = Arrays.asList(
"192.168.1.1",
"192.168.1.2",
"192.168.1.3",
"192.168.1.4",
"192.168.1.5",
"192.168.1.6",
"192.168.1.7",
"192.168.1.8",
"192.168.10.1",
"192.168.10.2",
"192.168.10.3",
"192.168.10.4",
"192.168.10.5",
"192.168.10.6",
"192.168.10.7",
"192.168.10.8"
);
for (String ip : destinationIps){
for (String ip : ips){
Get abcGet = new Get(Bytes.toBytes(ip));
Result r = table.get(abcGet);
ArrayWritable w = new ArrayWritable(IntWritable.class);
List<String> attackTypeList = Arrays.asList(
"TCP SYN Flood",
"ICMP Flood",
"UDP Flood",
"DNS Amplification"
"ICMP Flood"
// "UDP Flood",
// "DNS Amplification"
);
for (String attackType : attackTypeList){
byte[] session_nums = r.getValue(Bytes.toBytes(attackType), Bytes.toBytes("session_num"));
@@ -62,12 +80,35 @@ public class HBaseTest {
}
// Get abcGet = new Get(Bytes.toBytes("1.0.0.1"));
// Result r = table.get(abcGet);
// ArrayWritable w = new ArrayWritable(IntWritable.class);
// w.readFields(new DataInputStream(new ByteArrayInputStream(r.getValue(Bytes.toBytes("TCP SYN Flood"), Bytes.toBytes("session_num")))));
// ArrayList<Integer> arr2 = fromWritable(w);
// System.out.println(arr2.toString());
// int[] arr = new int[144];
// Arrays.fill(arr, 100);
// List<String> ips = Arrays.asList(
// "192.168.1.1",
// "192.168.1.2",
// "192.168.1.3",
// "192.168.1.4",
// "192.168.1.5",
// "192.168.1.6",
// "192.168.1.7",
// "192.168.1.8",
// "192.168.10.1",
// "192.168.10.2",
// "192.168.10.3",
// "192.168.10.4",
// "192.168.10.5",
// "192.168.10.6",
// "192.168.10.7",
// "192.168.10.8"
// );
//
// for (String ip : ips){
// Put put = new Put(Bytes.toBytes(ip));
// put.addColumn(Bytes.toBytes("ICMP Flood"),Bytes.toBytes("session_num"), WritableUtils.toByteArray(toWritable(arr)));
// table.put(put);
// }
}

View File

@@ -1,6 +1,13 @@
package cn.mesalab.utils;
import cn.mesalab.config.ApplicationConfig;
import cn.mesalab.dao.DruidData;
import com.google.common.collect.Maps;
import com.zdjizhi.utils.JsonMapper;
import sun.net.util.URLUtil;
import java.net.URL;
import java.util.Map;
/**
* @author yjy
@@ -8,7 +15,57 @@ import com.zdjizhi.utils.JsonMapper;
* @date 2021/8/3 4:43 下午
*/
public class HttpClientUtilsTest {
private static HttpClientUtils httpClientUtils = new HttpClientUtils();
public static void main(String[] args) {
executeHttpPost("select * from top_server_ip_test_log limit 10");
}
private static Map<String, String> executeHttpPost(String sql){
String queryUrl = "http://192.168.44.12:8082/druid/v2/sql";
DruidQueryParam druidQueryParam = getDruidQueryParam(sql);
int socketTimeout = ApplicationConfig.HTTP_RESPONSE_TIMEOUT;
Map<String, String> stringStringMap = httpClientUtils.httpPost(queryUrl, JsonMapper.toJsonString(druidQueryParam), socketTimeout);
System.out.println(stringStringMap.toString());
return stringStringMap;
}
public static DruidQueryParam getDruidQueryParam(String sql) {
DruidQueryParam druidQueryParam = new DruidQueryParam();
druidQueryParam.setQuery(sql);
druidQueryParam.getContext().put("skipEmptyBuckets", "true");
druidQueryParam.setResultFormat("object");
return druidQueryParam;
}
}
class DruidQueryParam {
private String query;
private Map<String, String> context = Maps.newHashMap();
private String resultFormat;
public String getQuery() {
return query;
}
public void setQuery(String query) {
this.query = query;
}
public Map<String, String> getContext() {
return context;
}
public void setContext(Map<String, String> context) {
this.context = context;
}
public String getResultFormat() {
return resultFormat;
}
public void setResultFormat(String resultFormat) {
this.resultFormat = resultFormat;
}
}