IP为key组织Druid数据,删除ResultSetToListService及DataUtil淘汰方法
This commit is contained in:
@@ -51,8 +51,6 @@ public class ApplicationConfig {
|
||||
public static final Long DRUID_READ_BATCH_TIME_GRAD_HOUR = ConfigUtils.getLongProperty("druid.read.batch.time.grad.hour");
|
||||
public static final Integer THREAD_MAX_NUM = ConfigUtils.getIntProperty("thread.max.num");
|
||||
|
||||
|
||||
|
||||
// http config
|
||||
public static final Integer HTTP_REQUEST_TIMEOUT = ConfigUtils.getIntProperty("http.request.timeout");
|
||||
public static final Integer HTTP_RESPONSE_TIMEOUT = ConfigUtils.getIntProperty("http.response.timeout");
|
||||
|
||||
@@ -1,18 +1,16 @@
|
||||
package cn.mesalab.dao;
|
||||
|
||||
import cn.mesalab.config.ApplicationConfig;
|
||||
import cn.mesalab.dao.Impl.ResultSetToListServiceImp;
|
||||
import cn.mesalab.utils.DruidUtils;
|
||||
import io.vavr.Tuple;
|
||||
import io.vavr.Tuple2;
|
||||
import org.apache.calcite.avatica.AvaticaConnection;
|
||||
import org.apache.calcite.avatica.AvaticaStatement;
|
||||
import org.apache.commons.lang.StringUtils;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import java.sql.ResultSet;
|
||||
import java.sql.SQLException;
|
||||
import java.sql.ResultSetMetaData;
|
||||
import java.util.*;
|
||||
import java.util.stream.Collectors;
|
||||
|
||||
@@ -26,139 +24,51 @@ import java.util.stream.Collectors;
|
||||
public class DruidData {
|
||||
|
||||
private static final Logger LOG = LoggerFactory.getLogger(DruidData.class);
|
||||
private static DruidData druidData;
|
||||
private AvaticaConnection connection;
|
||||
private AvaticaStatement statement;
|
||||
|
||||
|
||||
{
|
||||
connectionInit();
|
||||
public static Map<String, List<Map<String, Object>>> readFromDruid(String sql, AvaticaStatement statement){
|
||||
Map<String, List<Map<String, Object>>> rsList = null;
|
||||
try{
|
||||
ResultSet resultSet = DruidUtils.executeQuery(statement, sql);
|
||||
rsList = selectAll(resultSet);
|
||||
} catch (Exception e){
|
||||
e.printStackTrace();
|
||||
}
|
||||
return rsList;
|
||||
}
|
||||
|
||||
/**
|
||||
* 连接初始化
|
||||
* 处理Druid读取返回数据为Map<String, List<Map<String, Object>>>形式
|
||||
* 外层map key为ip,内层map的key为ip的一条日志
|
||||
* @param rs
|
||||
* @return
|
||||
*/
|
||||
private void connectionInit(){
|
||||
public static Map<String, List<Map<String, Object>>> selectAll(ResultSet rs) {
|
||||
Map<String, List<Map<String, Object>>> allIpDataList = new HashMap<>();
|
||||
ArrayList<String> ipList = new ArrayList<>();
|
||||
|
||||
try {
|
||||
connection = DruidUtils.getConn();
|
||||
statement = connection.createStatement();
|
||||
statement.setQueryTimeout(0);
|
||||
ResultSetMetaData rmd = rs.getMetaData();
|
||||
int columnCount = rmd.getColumnCount();
|
||||
|
||||
} catch (SQLException exception) {
|
||||
exception.printStackTrace();
|
||||
}
|
||||
while (rs.next()) {
|
||||
Map<String, Object> rowData = new HashMap<>();
|
||||
for (int i = 1; i <= columnCount; ++i) {
|
||||
rowData.put(rmd.getColumnName(i), rs.getObject(i));
|
||||
}
|
||||
|
||||
/**
|
||||
* 获取实例
|
||||
* @return DruidData实例
|
||||
*/
|
||||
public static DruidData getInstance() {
|
||||
druidData = new DruidData();
|
||||
return druidData;
|
||||
String ip = (String) rowData.get(ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME);
|
||||
if(!ipList.contains(ip)){
|
||||
ipList.add(ip);
|
||||
List<Map<String, Object>> ipData = new ArrayList<>();
|
||||
allIpDataList.put(ip, ipData);
|
||||
}
|
||||
|
||||
/**
|
||||
* 获取distinct server ip
|
||||
* @return ArrayList<String> ip列表
|
||||
*/
|
||||
public static ArrayList<String> getServerIpList(AvaticaStatement statement, String timeFilter) {
|
||||
Long startQueryIpLIstTime = System.currentTimeMillis();
|
||||
ArrayList<String> serverIps = new ArrayList<String>();
|
||||
String sql = "SELECT distinct " + ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME
|
||||
+ " FROM " + ApplicationConfig.DRUID_TABLE
|
||||
+ " WHERE " + timeFilter
|
||||
+ " LIMIT 200";// FOR TEST
|
||||
try{
|
||||
ResultSet resultSet = DruidUtils.executeQuery(statement,sql);
|
||||
while(resultSet.next()){
|
||||
String ip = resultSet.getString(ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME);
|
||||
serverIps.add(ip);
|
||||
rowData.remove(ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME);
|
||||
allIpDataList.get(ip).add(rowData);
|
||||
}
|
||||
} catch (Exception e){
|
||||
e.printStackTrace();
|
||||
} catch (Exception ex) {
|
||||
ex.printStackTrace();
|
||||
}
|
||||
Long endQueryIpListTime = System.currentTimeMillis();
|
||||
LOG.info("性能测试:ip list查询耗时——"+(endQueryIpListTime-startQueryIpLIstTime));
|
||||
|
||||
return serverIps;
|
||||
}
|
||||
|
||||
public static List<String> getServerIpList(List<Map<String, Object>> dataFromDruid) {
|
||||
List<String> serverIps = new ArrayList<>();
|
||||
List<String> collect = dataFromDruid.stream().map(i -> i.get(ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME).toString())
|
||||
.collect(Collectors.toList());
|
||||
serverIps = collect.stream().distinct().collect(Collectors.toList());
|
||||
return serverIps;
|
||||
}
|
||||
|
||||
/**
|
||||
* 从Druid读取目标IP相关数据
|
||||
* @param ipList ip列表
|
||||
* @return 数据库读取结果
|
||||
*/
|
||||
public static List<Map<String, Object>> readFromDruid(AvaticaConnection connection, AvaticaStatement statement, List<String> ipList, String timeFilter){
|
||||
List<Map<String, Object>> rsList = null;
|
||||
ipList = ipList.stream().map( ip -> "\'"+ip+"\'").collect(Collectors.toList());
|
||||
String ipString = "(" + StringUtils.join(ipList, ",").toString() + ")";
|
||||
String sql = "SELECT "+ ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME
|
||||
+ ", "+ ApplicationConfig.DRUID_ATTACKTYPE_COLUMN_NAME
|
||||
+ ", "+ ApplicationConfig.BASELINE_METRIC_TYPE
|
||||
+ ", " + ApplicationConfig.DRUID_RECVTIME_COLUMN_NAME
|
||||
+ " FROM " + ApplicationConfig.DRUID_TABLE
|
||||
+ " WHERE " + ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME
|
||||
+ " IN " + ipString
|
||||
+ " AND " + timeFilter;
|
||||
try{
|
||||
ResultSet resultSet = DruidUtils.executeQuery(statement, sql);
|
||||
ResultSetToListService service = new ResultSetToListServiceImp();
|
||||
rsList = service.selectAll(resultSet);
|
||||
} catch (Exception e){
|
||||
e.printStackTrace();
|
||||
}
|
||||
return rsList;
|
||||
}
|
||||
|
||||
public static List<Map<String, Object>> readFromDruid(String sql, AvaticaStatement statement){
|
||||
List<Map<String, Object>> rsList = null;
|
||||
try{
|
||||
ResultSet resultSet = DruidUtils.executeQuery(statement, sql);
|
||||
ResultSetToListService service = new ResultSetToListServiceImp();
|
||||
rsList = service.selectAll(resultSet);
|
||||
} catch (Exception e){
|
||||
e.printStackTrace();
|
||||
}
|
||||
return rsList;
|
||||
}
|
||||
|
||||
public static List<Map<String, Object>> getBatchData(List<Map<String, Object>>allData, List<String> ipList){
|
||||
ArrayList<Map<String, Object>> rsList = new ArrayList<>();
|
||||
for(Map<String, Object> record: allData){
|
||||
if(ipList.contains(record.get(ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME))){
|
||||
rsList.add(record);
|
||||
}
|
||||
}
|
||||
return rsList;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* 从数据库读取结果中筛选指定ip的指定攻击类型的数据
|
||||
* @param allData 数据库读取结果
|
||||
* @param ip 指定ip
|
||||
* @param attackType 指定攻击类型
|
||||
* @return 筛选结果
|
||||
*/
|
||||
public static List<Map<String, Object>> getTimeSeriesData(List<Map<String, Object>> allData, String ip, String attackType){
|
||||
List<Map<String, Object>> rsList = new ArrayList<>();
|
||||
try{
|
||||
rsList = allData.stream().
|
||||
filter(i->((i.get(ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME).equals(ip))
|
||||
)&&(i.get(ApplicationConfig.DRUID_ATTACKTYPE_COLUMN_NAME).equals(attackType)))
|
||||
.collect(Collectors.toList());
|
||||
} catch (NullPointerException e){
|
||||
}
|
||||
return rsList;
|
||||
return allIpDataList;
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -180,7 +90,7 @@ public class DruidData {
|
||||
default:
|
||||
LOG.warn("没有设置Druid数据读取方式");
|
||||
}
|
||||
return Tuple.of(maxTime, minTime);
|
||||
return Tuple.of(minTime, maxTime);
|
||||
}
|
||||
|
||||
private static long getCurrentDay(int bias) {
|
||||
@@ -198,32 +108,46 @@ public class DruidData {
|
||||
return getCurrentDay(0);
|
||||
}
|
||||
|
||||
/**
|
||||
* 关闭当前DruidData
|
||||
*/
|
||||
public void closeConn(){
|
||||
try {
|
||||
DruidUtils.closeConnection();
|
||||
} catch (SQLException exception) {
|
||||
exception.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
public static String getDruidQuerySql(Long originBeginTime, int currentPart, long timeGrad){
|
||||
public static String getDruidQuerySql(List<String> attackTypeList, Long originBeginTime, int currentPart, long timeGrad){
|
||||
long startTime = originBeginTime + currentPart * timeGrad;
|
||||
long endTime = originBeginTime + (currentPart+1) * timeGrad;
|
||||
attackTypeList = attackTypeList.stream().map(attack -> "'"+attack+"'").collect(Collectors.toList());
|
||||
String attackList = "(" + StringUtils.join(attackTypeList, ",") + ")";
|
||||
String timeFilter = ApplicationConfig.DRUID_RECVTIME_COLUMN_NAME
|
||||
+ " >= MILLIS_TO_TIMESTAMP(" + startTime
|
||||
+ ") AND " + ApplicationConfig.DRUID_RECVTIME_COLUMN_NAME
|
||||
+ " < MILLIS_TO_TIMESTAMP(" + endTime + ")";
|
||||
|
||||
String sql = "SELECT "+ ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME
|
||||
return "SELECT "+ ApplicationConfig.DRUID_SERVERIP_COLUMN_NAME
|
||||
+ ", "+ ApplicationConfig.DRUID_ATTACKTYPE_COLUMN_NAME
|
||||
+ ", "+ ApplicationConfig.BASELINE_METRIC_TYPE
|
||||
+ ", " + ApplicationConfig.DRUID_RECVTIME_COLUMN_NAME
|
||||
+ " FROM " + ApplicationConfig.DRUID_TABLE
|
||||
+ " WHERE " + timeFilter; // FOR TEST
|
||||
return sql;
|
||||
+ " WHERE " + ApplicationConfig.DRUID_ATTACKTYPE_COLUMN_NAME
|
||||
+ " IN " + attackList
|
||||
+ " AND " + timeFilter;
|
||||
}
|
||||
|
||||
/**
|
||||
* 描述:分割Map
|
||||
* @param map 原始数据
|
||||
* @param pageSize 每个map数量
|
||||
* @return ListList<Map<K, V>>
|
||||
*/
|
||||
public static <K, V> List<Map<K, V>> splitMap(Map<K, V> map, int pageSize){
|
||||
if(map == null || map.isEmpty()){
|
||||
return Collections.emptyList();
|
||||
}
|
||||
List<Map<K, V>> newList = new ArrayList<>();
|
||||
int j = 0;
|
||||
for(K k :map.keySet()){
|
||||
if(j%pageSize == 0) {
|
||||
newList.add(new HashMap<>());
|
||||
}
|
||||
newList.get(newList.size()-1).put(k, map.get(k));
|
||||
j++;
|
||||
}
|
||||
return newList;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,44 +0,0 @@
|
||||
package cn.mesalab.dao.Impl;
|
||||
|
||||
import cn.mesalab.dao.ResultSetToListService;
|
||||
|
||||
import java.sql.ResultSet;
|
||||
import java.sql.ResultSetMetaData;
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* @author yjy
|
||||
* @version 1.0
|
||||
* @date 2021/7/24 4:29 下午
|
||||
*/
|
||||
public class ResultSetToListServiceImp implements ResultSetToListService {
|
||||
|
||||
/**
|
||||
* SELECT 查询记录以List结构返回,每一个元素是一条记录
|
||||
* 每条记录保存在Map<String, Object>里面,String类型指字段名字,Object对应字段值
|
||||
*
|
||||
* @param rs
|
||||
* @return List<Map<String, Object>>
|
||||
*/
|
||||
@Override
|
||||
public List<Map<String, Object>> selectAll(ResultSet rs) {
|
||||
List<Map<String, Object>> list = new ArrayList<Map<String, Object>>();
|
||||
try {
|
||||
ResultSetMetaData rmd = rs.getMetaData();
|
||||
int columnCount = rmd.getColumnCount();
|
||||
while (rs.next()) {
|
||||
Map<String, Object> rowData = new HashMap<String, Object>();
|
||||
for (int i = 1; i <= columnCount; ++i) {
|
||||
rowData.put(rmd.getColumnName(i), rs.getObject(i));
|
||||
}
|
||||
list.add(rowData);
|
||||
}
|
||||
} catch (Exception ex) {
|
||||
ex.printStackTrace();
|
||||
}
|
||||
return list;
|
||||
}
|
||||
}
|
||||
@@ -6,7 +6,8 @@ import org.apache.calcite.avatica.AvaticaStatement;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.concurrent.Callable;
|
||||
import java.util.concurrent.CountDownLatch;
|
||||
@@ -16,11 +17,11 @@ import java.util.concurrent.CountDownLatch;
|
||||
* @version 1.0
|
||||
* @date 2021/8/3 8:10 下午
|
||||
*/
|
||||
public class ReadHistoricalDruidData implements Callable<ArrayList<Map<String, Object>>> {
|
||||
public class ReadHistoricalDruidData implements Callable<Map<String, List<Map<String, Object>>>> {
|
||||
private static final Logger LOG = LoggerFactory.getLogger(ReadHistoricalDruidData.class);
|
||||
|
||||
private String sql;
|
||||
private CountDownLatch countDownLatch;
|
||||
private final String sql;
|
||||
private final CountDownLatch countDownLatch;
|
||||
|
||||
public ReadHistoricalDruidData(
|
||||
String sql,
|
||||
@@ -31,15 +32,14 @@ public class ReadHistoricalDruidData implements Callable<ArrayList<Map<String, O
|
||||
}
|
||||
|
||||
@Override
|
||||
public ArrayList<Map<String, Object>> call() {
|
||||
ArrayList<Map<String, Object>> resultData = new ArrayList<>();
|
||||
public Map<String, List<Map<String, Object>>> call() {
|
||||
Map<String, List<Map<String, Object>>> resultData = new HashMap<>();
|
||||
try {
|
||||
long start = System.currentTimeMillis();
|
||||
AvaticaConnection connection = DruidUtils.getConn();
|
||||
AvaticaStatement stat = connection.createStatement();
|
||||
resultData.addAll(DruidData.readFromDruid(sql, stat));
|
||||
|
||||
|
||||
Map<String, List<Map<String, Object>>> readFromDruid = DruidData.readFromDruid(sql, stat);
|
||||
resultData.putAll(readFromDruid);
|
||||
|
||||
long end = System.currentTimeMillis();
|
||||
LOG.info(sql + "\n读取" + resultData.size() + "条数据,运行时间:" + (end - start));
|
||||
|
||||
@@ -1,24 +0,0 @@
|
||||
package cn.mesalab.dao;
|
||||
|
||||
import java.sql.ResultSet;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
|
||||
/**
|
||||
* @author yjy
|
||||
* @version 1.0
|
||||
* @date 2021/7/24 4:27 下午
|
||||
*/
|
||||
public interface ResultSetToListService {
|
||||
/**
|
||||
* SELECT * FROM websites
|
||||
* 查询所有记录,以List返回
|
||||
* list对象的每一个元素都是一条记录
|
||||
* 每条记录保存在Map<String, Object>里面,String类型指字段名字,Object对应字段值
|
||||
*
|
||||
* @param rs
|
||||
* @return List<Map < String, Object>>
|
||||
*/
|
||||
public List<Map<String, Object>> selectAll(ResultSet rs);
|
||||
}
|
||||
@@ -3,18 +3,14 @@ package cn.mesalab.service;
|
||||
import cn.mesalab.config.ApplicationConfig;
|
||||
import cn.mesalab.dao.DruidData;
|
||||
import cn.mesalab.dao.ReadHistoricalDruidData;
|
||||
import cn.mesalab.utils.DruidUtils;
|
||||
import cn.mesalab.utils.HbaseUtils;
|
||||
import com.google.common.collect.Lists;
|
||||
import com.google.common.util.concurrent.ThreadFactoryBuilder;
|
||||
import io.vavr.Tuple2;
|
||||
import org.apache.calcite.avatica.AvaticaConnection;
|
||||
import org.apache.calcite.avatica.AvaticaStatement;
|
||||
import org.apache.commons.collections.ListUtils;
|
||||
import org.apache.hadoop.hbase.client.Table;
|
||||
import org.slf4j.Logger;
|
||||
import org.slf4j.LoggerFactory;
|
||||
|
||||
import java.sql.SQLException;
|
||||
import java.util.*;
|
||||
import java.util.concurrent.*;
|
||||
|
||||
@@ -30,21 +26,16 @@ public class BaselineGeneration {
|
||||
private static final Table hbaseTable = HbaseUtils.getInstance().getHbaseTable();
|
||||
|
||||
private static final List<String> ATTACK_TYPE_LIST = Arrays.asList(
|
||||
ApplicationConfig.DRUID_ATTACKTYPE_TCP_SYN_FLOOD,
|
||||
ApplicationConfig.DRUID_ATTACKTYPE_ICMP_FLOOD,
|
||||
ApplicationConfig.DRUID_ATTACKTYPE_UDP_FLOOD,
|
||||
ApplicationConfig.DRUID_ATTACKTYPE_DNS_AMPL
|
||||
ApplicationConfig.DRUID_ATTACKTYPE_TCP_SYN_FLOOD
|
||||
// ApplicationConfig.DRUID_ATTACKTYPE_ICMP_FLOOD,
|
||||
// ApplicationConfig.DRUID_ATTACKTYPE_UDP_FLOOD,
|
||||
// ApplicationConfig.DRUID_ATTACKTYPE_DNS_AMPL
|
||||
);
|
||||
private static final Integer BASELINE_POINT_NUM =
|
||||
ApplicationConfig.BASELINE_RANGE_DAYS * 24 * (60/ApplicationConfig.HISTORICAL_GRAD);
|
||||
|
||||
private static final Tuple2<Long, Long> START_END_TIMES = DruidData.getTimeLimit();
|
||||
private static final String TIME_FILTER = ApplicationConfig.DRUID_RECVTIME_COLUMN_NAME
|
||||
+ " >= MILLIS_TO_TIMESTAMP(" + START_END_TIMES._2
|
||||
+ ") AND " + ApplicationConfig.DRUID_RECVTIME_COLUMN_NAME
|
||||
+ " < MILLIS_TO_TIMESTAMP(" + START_END_TIMES._1 + ")";
|
||||
|
||||
private static final ArrayList<Map<String, Object>> allFromDruid = new ArrayList<>();
|
||||
private static final Map<String, List<Map<String, Object>>> allFromDruid = new HashMap<>();
|
||||
|
||||
/**
|
||||
* 程序执行
|
||||
@@ -85,25 +76,27 @@ public class BaselineGeneration {
|
||||
TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>(1024), loadDataThreadFactory,
|
||||
new ThreadPoolExecutor.AbortPolicy());
|
||||
long timeGrad = 3600000 * ApplicationConfig.DRUID_READ_BATCH_TIME_GRAD_HOUR;
|
||||
int threadPoolNum = (int) ((START_END_TIMES._1-START_END_TIMES._2)/timeGrad);
|
||||
ArrayList<Future<ArrayList<Map<String, Object>>>> resultList = new ArrayList<>();
|
||||
int threadPoolNum = (int) ((START_END_TIMES._2-START_END_TIMES._1)/timeGrad);
|
||||
ArrayList<Future<Map<String, List<Map<String, Object>>>>> resultList = new ArrayList<>();
|
||||
CountDownLatch loadDataCountDownLatch = new CountDownLatch(threadPoolNum);
|
||||
for (int i = 0; i < threadNum; i++) {
|
||||
String sql = DruidData.getDruidQuerySql(START_END_TIMES._1, i, timeGrad);
|
||||
for (int i = 0; i < threadPoolNum; i++) {
|
||||
String sql = DruidData.getDruidQuerySql(ATTACK_TYPE_LIST, START_END_TIMES._1, i, timeGrad);
|
||||
ReadHistoricalDruidData readHistoricalDruidData = new ReadHistoricalDruidData(
|
||||
sql,
|
||||
loadDataCountDownLatch
|
||||
);
|
||||
Future<ArrayList<Map<String, Object>>> future = loadDataExecutor.submit(readHistoricalDruidData);
|
||||
Future<Map<String, List<Map<String, Object>>>> future = loadDataExecutor.submit(readHistoricalDruidData);
|
||||
resultList.add(future);
|
||||
}
|
||||
loadDataExecutor.shutdown();
|
||||
loadDataCountDownLatch.await();
|
||||
|
||||
for(Future<ArrayList<Map<String, Object>>> future: resultList){
|
||||
for(Future<Map<String, List<Map<String, Object>>>> future: resultList){
|
||||
try {
|
||||
if(future.get()!=null){
|
||||
allFromDruid.addAll(future.get());
|
||||
Map<String, List<Map<String, Object>>> queryBatchIpData = future.get();
|
||||
if(queryBatchIpData !=null){
|
||||
queryBatchIpData.forEach((ip, data)->
|
||||
allFromDruid.merge(ip, data, ListUtils::union));
|
||||
}else{
|
||||
LOG.error("future.get()未获取到结果");
|
||||
}
|
||||
@@ -115,8 +108,6 @@ public class BaselineGeneration {
|
||||
LOG.info("Druid 加载数据共耗时:"+(last-start));
|
||||
|
||||
// BaseLine生成
|
||||
// 获取IP列表
|
||||
List<String> destinationIps = DruidData.getServerIpList(allFromDruid);
|
||||
ThreadFactory generationThreadFactory = new ThreadFactoryBuilder()
|
||||
.setNameFormat("baseline-generate-%d").build();
|
||||
ThreadPoolExecutor generationExecutor = new ThreadPoolExecutor(
|
||||
@@ -124,21 +115,19 @@ public class BaselineGeneration {
|
||||
TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>(1024), generationThreadFactory,
|
||||
new ThreadPoolExecutor.AbortPolicy());
|
||||
|
||||
LOG.info("共查询到服务端ip " +destinationIps.size() + " 个");
|
||||
LOG.info("共查询到服务端ip " +allFromDruid.size() + " 个");
|
||||
LOG.info("Baseline batch 大小: " + ApplicationConfig.BASELINE_GENERATE_BATCH_SIZE);
|
||||
|
||||
// 分批进行IP baseline生成和处理
|
||||
List<List<String>> batchIpLists = Lists.partition(destinationIps, ApplicationConfig.BASELINE_GENERATE_BATCH_SIZE);
|
||||
CountDownLatch generateCountDownLatch = new CountDownLatch(threadPoolNum);
|
||||
for (List<String> batchIps: batchIpLists){
|
||||
if(batchIps.size()>0){
|
||||
|
||||
List<Map<String, List<Map<String, Object>>>> batchDruidDataLists = DruidData.splitMap(allFromDruid, ApplicationConfig.BASELINE_GENERATE_BATCH_SIZE);
|
||||
CountDownLatch generateCountDownLatch = new CountDownLatch(batchDruidDataLists.size());
|
||||
for (Map<String, List<Map<String, Object>>>batchDruidData: batchDruidDataLists){
|
||||
if(batchDruidData.size()>0){
|
||||
BaselineSingleThread baselineSingleThread = new BaselineSingleThread(
|
||||
batchIps,
|
||||
hbaseTable,
|
||||
ATTACK_TYPE_LIST,
|
||||
BASELINE_POINT_NUM,
|
||||
TIME_FILTER,
|
||||
allFromDruid,
|
||||
batchDruidData,
|
||||
generateCountDownLatch
|
||||
);
|
||||
generationExecutor.execute(baselineSingleThread);
|
||||
|
||||
@@ -1,12 +1,9 @@
|
||||
package cn.mesalab.service;
|
||||
|
||||
import cn.mesalab.config.ApplicationConfig;
|
||||
import cn.mesalab.dao.DruidData;
|
||||
import cn.mesalab.service.algorithm.KalmanFilter;
|
||||
import cn.mesalab.utils.HbaseUtils;
|
||||
import cn.mesalab.utils.SeriesUtils;
|
||||
import org.apache.calcite.avatica.AvaticaConnection;
|
||||
import org.apache.calcite.avatica.AvaticaStatement;
|
||||
import org.apache.commons.math3.stat.StatUtils;
|
||||
import org.apache.hadoop.hbase.client.Put;
|
||||
import org.apache.hadoop.hbase.client.Table;
|
||||
@@ -29,43 +26,38 @@ import java.util.stream.Collectors;
|
||||
public class BaselineSingleThread extends Thread {
|
||||
private static final Logger LOG = LoggerFactory.getLogger(BaselineSingleThread.class);
|
||||
|
||||
private List<String> ipList;
|
||||
private Table hbaseTable;
|
||||
private List<String> attackTypeList;
|
||||
private Integer BASELINE_POINT_NUM;
|
||||
private String timeFilter;
|
||||
private List<Map<String, Object>> batchDruidData;
|
||||
private List<Map<String, Object>> historicalData;
|
||||
private CountDownLatch countDownLatch;
|
||||
private final Table hbaseTable;
|
||||
private final List<String> attackTypeList;
|
||||
private final Integer historicalPointNum;
|
||||
private final Map<String,List<Map<String, Object>>> batchDruidData;
|
||||
private final CountDownLatch countDownLatch;
|
||||
|
||||
public BaselineSingleThread(
|
||||
List<String> batchIpList,
|
||||
Table hbaseTable,
|
||||
List<String> attackTypeList,
|
||||
Integer BASELINE_POINT_NUM,
|
||||
String timeFilter,
|
||||
List<Map<String, Object>> historicalData,
|
||||
Integer baselinePointNum,
|
||||
Map<String,List<Map<String, Object>>> batchDruidData,
|
||||
CountDownLatch countDownLatch
|
||||
){
|
||||
this.ipList = batchIpList;
|
||||
this.hbaseTable = hbaseTable;
|
||||
this.attackTypeList = attackTypeList;
|
||||
this.BASELINE_POINT_NUM = BASELINE_POINT_NUM;
|
||||
this.timeFilter = timeFilter;
|
||||
this.historicalData = historicalData;
|
||||
this.historicalPointNum = baselinePointNum;
|
||||
this.batchDruidData = batchDruidData;
|
||||
this.countDownLatch = countDownLatch;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void run(){
|
||||
batchDruidData = DruidData.getBatchData(historicalData, ipList);
|
||||
|
||||
List<Put> putList = new ArrayList<>();
|
||||
for(String attackType: attackTypeList){
|
||||
for(String ip: ipList){
|
||||
int[] ipBaseline = generateSingleIpBaseline(ip, attackType);
|
||||
for(String ip: batchDruidData.keySet()){
|
||||
// 筛选指定ip指定攻击类型的数据
|
||||
List<Map<String, Object>> ipDruidData = batchDruidData.get(ip).stream()
|
||||
.filter(i -> i.get(ApplicationConfig.DRUID_ATTACKTYPE_COLUMN_NAME).equals(attackType)).collect(Collectors.toList());
|
||||
// baseline生成
|
||||
int[] ipBaseline = generateSingleIpBaseline(ipDruidData);
|
||||
if (ipBaseline!= null){
|
||||
putList = HbaseUtils.cachedInPut(putList, ip, ipBaseline, attackType, ApplicationConfig.BASELINE_METRIC_TYPE);
|
||||
HbaseUtils.cachedInPut(putList, ip, ipBaseline, attackType, ApplicationConfig.BASELINE_METRIC_TYPE);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -76,46 +68,40 @@ public class BaselineSingleThread extends Thread {
|
||||
e.printStackTrace();
|
||||
} finally {
|
||||
countDownLatch.countDown();
|
||||
LOG.info("本线程读取完毕,剩余线程数量:" + countDownLatch.getCount());
|
||||
LOG.info("本线程处理完毕,剩余线程数量:" + countDownLatch.getCount());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 单ip baseline生成逻辑
|
||||
* @param ip ip
|
||||
* @param attackType 攻击类型
|
||||
* @return baseline序列,长度为 60/HISTORICAL_GRAD*24
|
||||
*/
|
||||
private int[] generateSingleIpBaseline(String ip, String attackType){
|
||||
// 查询
|
||||
List<Map<String, Object>> originSeries = DruidData.getTimeSeriesData(batchDruidData, ip, attackType);
|
||||
|
||||
if (originSeries.size()==0){
|
||||
private int[] generateSingleIpBaseline(List<Map<String, Object>> ipDruidData){
|
||||
if (ipDruidData.size()==0){
|
||||
return null;
|
||||
}
|
||||
|
||||
// 时间序列缺失值补0
|
||||
List<Map<String, Object>> completSeries = SeriesUtils.complementSeries(originSeries);
|
||||
List<Map<String, Object>> completSeries = SeriesUtils.complementSeries(ipDruidData);
|
||||
|
||||
int[] baselineArr = new int[BASELINE_POINT_NUM];
|
||||
int[] baselineArr = new int[historicalPointNum];
|
||||
List<Integer>series = completSeries.stream().map(
|
||||
i -> Integer.valueOf(i.get(ApplicationConfig.BASELINE_METRIC_TYPE).toString())).collect(Collectors.toList());
|
||||
|
||||
// 判断ip出现频率
|
||||
if(originSeries.size()/(float)completSeries.size()>ApplicationConfig.BASELINE_HISTORICAL_RATIO){
|
||||
if(ipDruidData.size()/(float)completSeries.size()>ApplicationConfig.BASELINE_HISTORICAL_RATIO){
|
||||
// 高频率
|
||||
double percentile = StatUtils.percentile(series.stream().mapToDouble(Double::valueOf).toArray(),
|
||||
ApplicationConfig.BASELINE_SPARSE_FILL_PERCENTILE);
|
||||
Arrays.fill(baselineArr, (int)percentile);
|
||||
baselineArr = baselineFunction(series);
|
||||
|
||||
} else {
|
||||
// 判断周期性
|
||||
if (SeriesUtils.isPeriod(series)){
|
||||
baselineArr = baselineFunction(series);
|
||||
} else {
|
||||
int ipPercentile = SeriesUtils.percentile(
|
||||
originSeries.stream().map(i ->
|
||||
ipDruidData.stream().map(i ->
|
||||
Integer.valueOf(i.get(ApplicationConfig.BASELINE_METRIC_TYPE).toString())).collect(Collectors.toList()),
|
||||
ApplicationConfig.BASELINE_RATIONAL_PERCENTILE);
|
||||
Arrays.fill(baselineArr, ipPercentile);
|
||||
@@ -135,11 +121,11 @@ public class BaselineSingleThread extends Thread {
|
||||
switch (ApplicationConfig.BASELINE_FUNCTION){
|
||||
case "KalmanFilter":
|
||||
KalmanFilter kalmanFilter = new KalmanFilter();
|
||||
kalmanFilter.forcast(timeSeries, BASELINE_POINT_NUM);
|
||||
kalmanFilter.forcast(timeSeries, historicalPointNum);
|
||||
result = kalmanFilter.getForecastSeries().stream().mapToInt(Integer::valueOf).toArray();
|
||||
break;
|
||||
default:
|
||||
result = timeSeries.subList(0, BASELINE_POINT_NUM).stream().mapToInt(Integer::valueOf).toArray();
|
||||
result = timeSeries.subList(0, historicalPointNum).stream().mapToInt(Integer::valueOf).toArray();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
@@ -50,9 +50,9 @@ public class SeriesUtils {
|
||||
* 时序数据补齐
|
||||
*/
|
||||
public static List<Map<String, Object>> complementSeries(List<Map<String, Object>> originSeries){
|
||||
LocalDateTime startTime = LocalDateTime.ofInstant(Instant.ofEpochMilli(druidData.getTimeLimit()._2), TimeZone
|
||||
LocalDateTime startTime = LocalDateTime.ofInstant(Instant.ofEpochMilli(DruidData.getTimeLimit()._1), TimeZone
|
||||
.getDefault().toZoneId());
|
||||
LocalDateTime endTime = LocalDateTime.ofInstant(Instant.ofEpochMilli(druidData.getTimeLimit()._1), TimeZone
|
||||
LocalDateTime endTime = LocalDateTime.ofInstant(Instant.ofEpochMilli(DruidData.getTimeLimit()._2), TimeZone
|
||||
.getDefault().toZoneId());
|
||||
List<String> dateList = completionDate(startTime, endTime);
|
||||
|
||||
|
||||
@@ -26,6 +26,7 @@ read.druid.time.limit.type=1
|
||||
read.druid.min.time=1625414400000
|
||||
#06-01
|
||||
#read.druid.min.time=1622476800000
|
||||
#07-08
|
||||
read.druid.max.time=1625673600000
|
||||
|
||||
#读取过去N天数据,最小值为3天(需要判断周期性)
|
||||
|
||||
Reference in New Issue
Block a user