协议与应用统计程序基于事件时间处理,且结果数据时间戳为毫秒级。(TSG-16737)
This commit is contained in:
2
pom.xml
2
pom.xml
@@ -6,7 +6,7 @@
|
||||
|
||||
<groupId>com.zdjizhi</groupId>
|
||||
<artifactId>app-protocol-stat-traffic-merge</artifactId>
|
||||
<version>230710-Time</version>
|
||||
<version>230821</version>
|
||||
|
||||
<name>app-protocol-stat-traffic-merge</name>
|
||||
<url>http://www.example.com</url>
|
||||
|
||||
@@ -1,24 +1,23 @@
|
||||
#--------------------------------地址配置------------------------------#
|
||||
|
||||
#管理kafka地址
|
||||
source.kafka.servers=192.168.44.12:9094
|
||||
source.kafka.servers=192.168.44.85:9094
|
||||
|
||||
#管理输出kafka地址
|
||||
sink.kafka.servers=192.168.44.12:9094
|
||||
sink.kafka.servers=192.168.44.85:9094
|
||||
|
||||
#--------------------------------HTTP------------------------------#
|
||||
#kafka 证书地址
|
||||
tools.library=D:\\workerspace\\dat
|
||||
#--------------------------------Kafka消费组信息------------------------------#
|
||||
|
||||
#--------------------------------Kafka消费组信息------------------------------#
|
||||
#kafka 接收数据topic
|
||||
source.kafka.topic=etl-test
|
||||
source.kafka.topic=NETWORK-TRAFFIC-METRICS
|
||||
|
||||
#补全数据 输出 topic
|
||||
sink.kafka.topic=etl-test-result
|
||||
sink.kafka.topic=test-result
|
||||
|
||||
#读取topic,存储该spout id的消费offset信息,可通过该拓扑命名;具体存储offset的位置,确定下次读取不重复的数据;
|
||||
group.id=livecharts-test-20230423-1
|
||||
group.id=livecharts-test-20230423-2
|
||||
|
||||
#--------------------------------topology配置------------------------------#
|
||||
#consumer 并行度
|
||||
@@ -39,3 +38,5 @@ count.window.time=15
|
||||
#数据源 firewall or agent
|
||||
metrics.data.source=firewall
|
||||
|
||||
#watermark延迟
|
||||
watermark.max.orderness=60
|
||||
|
||||
@@ -27,6 +27,7 @@ public class GlobalConfig {
|
||||
public static final String MEASUREMENT_NAME = GlobalConfigLoad.getStringProperty(1, "measurement.name");
|
||||
public static final Integer PARSE_PARALLELISM = GlobalConfigLoad.getIntProperty(0, "parse.parallelism");
|
||||
public static final Integer WINDOW_PARALLELISM = GlobalConfigLoad.getIntProperty(0, "window.parallelism");
|
||||
public static final Integer WARTERMARK_MAX_ORDERNESS = GlobalConfigLoad.getIntProperty(0, "watermark.max.orderness");
|
||||
public static final Integer COUNT_WINDOW_TIME = GlobalConfigLoad.getIntProperty(0, "count.window.time");
|
||||
public static final String TOOLS_LIBRARY = GlobalConfigLoad.getStringProperty(0, "tools.library");
|
||||
public static final Integer SINK_PARALLELISM = GlobalConfigLoad.getIntProperty(0, "sink.parallelism");
|
||||
|
||||
@@ -6,21 +6,22 @@ import com.zdjizhi.common.config.GlobalConfig;
|
||||
import com.zdjizhi.common.pojo.Fields;
|
||||
import com.zdjizhi.common.pojo.Metrics;
|
||||
import com.zdjizhi.common.pojo.Tags;
|
||||
import com.zdjizhi.utils.functions.filter.DataTypeFilter;
|
||||
import com.zdjizhi.utils.functions.keyby.DimensionKeyBy;
|
||||
import com.zdjizhi.utils.functions.map.MetricsParseMap;
|
||||
import com.zdjizhi.utils.functions.map.ResultFlatMap;
|
||||
import com.zdjizhi.utils.functions.process.ParsingData;
|
||||
import com.zdjizhi.utils.functions.statistics.DispersionCountWindow;
|
||||
import com.zdjizhi.utils.functions.statistics.MergeCountWindow;
|
||||
import com.zdjizhi.utils.kafka.KafkaConsumer;
|
||||
import com.zdjizhi.utils.kafka.KafkaProducer;
|
||||
import org.apache.flink.api.java.tuple.Tuple2;
|
||||
import org.apache.flink.api.common.eventtime.*;
|
||||
import org.apache.flink.api.java.tuple.Tuple3;
|
||||
import org.apache.flink.streaming.api.datastream.DataStream;
|
||||
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
|
||||
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
|
||||
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
|
||||
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
|
||||
import org.apache.flink.streaming.api.windowing.time.Time;
|
||||
|
||||
import java.time.Duration;
|
||||
|
||||
/**
|
||||
* @author qidaijie
|
||||
@@ -35,33 +36,39 @@ public class ApplicationProtocolTopology {
|
||||
try {
|
||||
final StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment();
|
||||
|
||||
//解析原始日志
|
||||
WatermarkStrategy<Tuple3<Tags, Fields, Long>> strategyForSession = WatermarkStrategy
|
||||
.<Tuple3<Tags, Fields, Long>>forBoundedOutOfOrderness(Duration.ofSeconds(GlobalConfig.WARTERMARK_MAX_ORDERNESS))
|
||||
.withTimestampAssigner((element,timestamp) -> element.f2);
|
||||
|
||||
//数据源
|
||||
DataStream<String> streamSource = environment.addSource(KafkaConsumer.getKafkaConsumer())
|
||||
.setParallelism(GlobalConfig.SOURCE_PARALLELISM).name(GlobalConfig.SOURCE_KAFKA_TOPIC);
|
||||
|
||||
SingleOutputStreamOperator<String> appProtocolFilter = streamSource.filter(new DataTypeFilter())
|
||||
.name("appProtocolFilter").setParallelism(GlobalConfig.SOURCE_PARALLELISM);
|
||||
//解析数据
|
||||
SingleOutputStreamOperator<Tuple3<Tags, Fields, Long>> parseDataProcess = streamSource.process(new ParsingData())
|
||||
.assignTimestampsAndWatermarks(strategyForSession)
|
||||
.name("ParseDataProcess")
|
||||
.setParallelism(GlobalConfig.PARSE_PARALLELISM);
|
||||
|
||||
|
||||
SingleOutputStreamOperator<Tuple2<Tags, Fields>> parseDataMap = appProtocolFilter.map(new MetricsParseMap())
|
||||
.name("ParseDataMap").setParallelism(GlobalConfig.PARSE_PARALLELISM);
|
||||
|
||||
SingleOutputStreamOperator<Metrics> dispersionCountWindow = parseDataMap.keyBy(new DimensionKeyBy())
|
||||
.window(TumblingProcessingTimeWindows.of(Time.seconds(GlobalConfig.COUNT_WINDOW_TIME)))
|
||||
//增量聚合窗口
|
||||
SingleOutputStreamOperator<Metrics> dispersionCountWindow = parseDataProcess.keyBy(new DimensionKeyBy())
|
||||
.window(TumblingEventTimeWindows.of(Time.seconds(GlobalConfig.COUNT_WINDOW_TIME)))
|
||||
.reduce(new DispersionCountWindow(), new MergeCountWindow())
|
||||
.name("DispersionCountWindow")
|
||||
.setParallelism(GlobalConfig.WINDOW_PARALLELISM);
|
||||
|
||||
//拆分数据
|
||||
SingleOutputStreamOperator<String> resultFlatMap = dispersionCountWindow.flatMap(new ResultFlatMap())
|
||||
.name("ResultFlatMap").setParallelism(GlobalConfig.SINK_PARALLELISM);
|
||||
|
||||
|
||||
//输出
|
||||
resultFlatMap.addSink(KafkaProducer.getKafkaProducer())
|
||||
.setParallelism(GlobalConfig.SINK_PARALLELISM).name(GlobalConfig.SINK_KAFKA_TOPIC);
|
||||
|
||||
environment.execute(args[0]);
|
||||
} catch (Exception e) {
|
||||
logger.error("This Flink task start ERROR! Exception information is :" + e);
|
||||
logger.error("This Flink task start ERROR! Exception information is :");
|
||||
e.printStackTrace();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -4,6 +4,9 @@ import com.zdjizhi.common.pojo.Fields;
|
||||
import com.zdjizhi.common.pojo.Tags;
|
||||
import org.apache.flink.api.java.functions.KeySelector;
|
||||
import org.apache.flink.api.java.tuple.Tuple2;
|
||||
import org.apache.flink.api.java.tuple.Tuple3;
|
||||
|
||||
import java.sql.Timestamp;
|
||||
|
||||
/**
|
||||
* @author qidaijie
|
||||
@@ -11,10 +14,10 @@ import org.apache.flink.api.java.tuple.Tuple2;
|
||||
* @Description:
|
||||
* @date 2021/7/2112:13
|
||||
*/
|
||||
public class DimensionKeyBy implements KeySelector<Tuple2<Tags, Fields>, String> {
|
||||
public class DimensionKeyBy implements KeySelector<Tuple3<Tags, Fields, Long>, String> {
|
||||
|
||||
@Override
|
||||
public String getKey(Tuple2<Tags, Fields> value) throws Exception {
|
||||
public String getKey(Tuple3<Tags, Fields, Long> value) throws Exception {
|
||||
//以map拼接的key分组
|
||||
return value.f0.toString();
|
||||
}
|
||||
|
||||
@@ -3,10 +3,12 @@ package com.zdjizhi.utils.functions.statistics;
|
||||
import cn.hutool.log.Log;
|
||||
import cn.hutool.log.LogFactory;
|
||||
import com.zdjizhi.common.pojo.Fields;
|
||||
import com.zdjizhi.common.pojo.Metrics;
|
||||
import com.zdjizhi.common.pojo.Tags;
|
||||
import com.zdjizhi.utils.general.MetricUtil;
|
||||
import org.apache.flink.api.common.functions.ReduceFunction;
|
||||
import org.apache.flink.api.java.tuple.Tuple2;
|
||||
import org.apache.flink.api.java.tuple.Tuple3;
|
||||
|
||||
/**
|
||||
* @author qidaijie
|
||||
@@ -14,21 +16,23 @@ import org.apache.flink.api.java.tuple.Tuple2;
|
||||
* @Description:
|
||||
* @date 2023/4/2314:02
|
||||
*/
|
||||
public class DispersionCountWindow implements ReduceFunction<Tuple2<Tags, Fields>> {
|
||||
public class DispersionCountWindow implements ReduceFunction<Tuple3<Tags, Fields, Long>> {
|
||||
private static final Log logger = LogFactory.get();
|
||||
|
||||
@Override
|
||||
public Tuple2<Tags, Fields> reduce(Tuple2<Tags, Fields> value1, Tuple2<Tags, Fields> value2) throws Exception {
|
||||
public Tuple3<Tags, Fields, Long> reduce(Tuple3<Tags, Fields, Long> value1, Tuple3<Tags, Fields, Long> value2) throws Exception {
|
||||
try {
|
||||
Fields cacheData = value1.f1;
|
||||
Fields newData = value2.f1;
|
||||
|
||||
Fields metricsResult = MetricUtil.statisticsMetrics(cacheData, newData);
|
||||
|
||||
return new Tuple2<>(value1.f0, metricsResult);
|
||||
return new Tuple3<>(value1.f0, metricsResult, value1.f2);
|
||||
} catch (RuntimeException e) {
|
||||
logger.error("An exception occurred during incremental aggregation! The message is:" + e.getMessage());
|
||||
return value1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
@@ -7,6 +7,7 @@ import com.zdjizhi.common.pojo.Fields;
|
||||
import com.zdjizhi.common.pojo.Metrics;
|
||||
import com.zdjizhi.common.pojo.Tags;
|
||||
import org.apache.flink.api.java.tuple.Tuple2;
|
||||
import org.apache.flink.api.java.tuple.Tuple3;
|
||||
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
|
||||
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
|
||||
import org.apache.flink.util.Collector;
|
||||
@@ -17,19 +18,20 @@ import org.apache.flink.util.Collector;
|
||||
* @Description:
|
||||
* @date 2023/4/2314:43
|
||||
*/
|
||||
public class MergeCountWindow extends ProcessWindowFunction<Tuple2<Tags, Fields>, Metrics, String, TimeWindow> {
|
||||
public class MergeCountWindow extends ProcessWindowFunction<Tuple3<Tags, Fields,Long>, Metrics, String, TimeWindow> {
|
||||
private static final Log logger = LogFactory.get();
|
||||
|
||||
@Override
|
||||
public void process(String windowKey, Context context, Iterable<Tuple2<Tags, Fields>> input, Collector<Metrics> output) throws Exception {
|
||||
public void process(String windowKey, Context context, Iterable<Tuple3<Tags, Fields,Long>> input, Collector<Metrics> output) throws Exception {
|
||||
try {
|
||||
Long endTime = context.window().getStart() / 1000;
|
||||
for (Tuple2<Tags, Fields> tuple : input) {
|
||||
long timestamp = context.window().getStart();
|
||||
for (Tuple3<Tags, Fields,Long> tuple : input) {
|
||||
Tags tags = tuple.f0;
|
||||
Fields fields = tuple.f1;
|
||||
Metrics metrics = new Metrics(GlobalConfig.MEASUREMENT_NAME, tags, fields, endTime);
|
||||
Metrics metrics = new Metrics(GlobalConfig.MEASUREMENT_NAME, tags, fields, timestamp);
|
||||
output.collect(metrics);
|
||||
}
|
||||
|
||||
} catch (RuntimeException e) {
|
||||
logger.error("An exception occurred in the process of full data aggregation! The message is:" + e.getMessage());
|
||||
}
|
||||
|
||||
@@ -43,9 +43,12 @@ public class FlagsTest {
|
||||
common_flags = 16400L;
|
||||
|
||||
System.out.println("common_flags & clientIsLocal = " + (common_flags & clientIsLocal));
|
||||
System.out.println("common_flags & serverIsLocal = " + (common_flags & serverIsLocal));
|
||||
System.out.println("common_flags & serverIsLocal = " + (common_flags & serverIsLocal)+"\n\n");
|
||||
|
||||
common_flags = 1062135466L;
|
||||
|
||||
System.out.println("common_flags & clientIsLocal = " + (common_flags & 128));
|
||||
System.out.println("common_flags & serverIsLocal = " + (common_flags & 256)+"\n\n");
|
||||
|
||||
if ((0L & clientIsLocal) == 0L){
|
||||
System.out.println("yes");
|
||||
|
||||
Reference in New Issue
Block a user