k8s初始版本storm
This commit is contained in:
@@ -0,0 +1,75 @@
|
||||
#管理kafka地址
|
||||
#bootstrap.servers=192.168.40.119:9092,192.168.40.122:9092,192.168.40.123:9092
|
||||
bootstrap.servers=ipaddress:9092
|
||||
#zookeeper 地址
|
||||
#zookeeper.servers=192.168.40.119:2181,192.168.40.122:2181,192.168.40.123:2181
|
||||
zookeeper.servers=ipaddress:2181
|
||||
#hbase zookeeper地址
|
||||
#hbase.zookeeper.servers=192.168.40.119:2181,192.168.40.122:2181,192.168.40.123:2181
|
||||
hbase.zookeeper.servers=ipaddress:2182
|
||||
#hbase tablename
|
||||
hbase.table.name=subcriber_info
|
||||
|
||||
#latest/earliest
|
||||
auto.offset.reset=latest
|
||||
|
||||
#kafka broker下的topic名称
|
||||
kafka.topic=CONNECTION-RECORD-LOG
|
||||
|
||||
#读取topic,存储该spout id的消费offset信息,可通过该拓扑命名;具体存储offset的位置,确定下次读取不重复的数据;
|
||||
group.id=connection-log-191122
|
||||
|
||||
#输出topic
|
||||
results.output.topic=CONNECTION-RECORD-COMPLETED-LOG
|
||||
|
||||
#storm topology workers
|
||||
topology.workers=1
|
||||
|
||||
#spout并行度 建议与kafka分区数相同
|
||||
spout.parallelism=1
|
||||
|
||||
#处理补全操作的bolt并行度-worker的倍数
|
||||
datacenter.bolt.parallelism=1
|
||||
|
||||
#写入kafka的并行度
|
||||
kafka.bolt.parallelism=1
|
||||
|
||||
#定位库地址
|
||||
ip.library=/dat/
|
||||
|
||||
#kafka批量条数
|
||||
batch.insert.num=2000
|
||||
|
||||
#数据中心(UID)
|
||||
data.center.id.num=12
|
||||
|
||||
#tick时钟频率
|
||||
topology.tick.tuple.freq.secs=5
|
||||
|
||||
#hbase 更新时间
|
||||
hbase.tick.tuple.freq.secs=60
|
||||
|
||||
#当bolt性能受限时,限制spout接收速度,理论看ack开启才有效
|
||||
topology.config.max.spout.pending=150000
|
||||
|
||||
#ack设置 1启动ack 0不启动ack
|
||||
topology.num.acks=0
|
||||
|
||||
#spout接收睡眠时间
|
||||
topology.spout.sleep.time=1
|
||||
|
||||
#用于过滤对准用户名
|
||||
check.ip.scope=10,100,192
|
||||
|
||||
#允许发送kafka最大失败数
|
||||
max.failure.num=20
|
||||
|
||||
#influx地址
|
||||
influx.ip=http://192.168.40.151:8086
|
||||
|
||||
#influx用户名
|
||||
influx.username=admin
|
||||
|
||||
#influx密码
|
||||
influx.password=admin
|
||||
|
||||
Binary file not shown.
3
storm/topo/storm_topology/completion/alone/start.sh
Normal file
3
storm/topo/storm_topology/completion/alone/start.sh
Normal file
@@ -0,0 +1,3 @@
|
||||
#!/bin/bash
|
||||
JAR_NAME='log-stream-completion.jar'
|
||||
storm jar $JAR_NAME cn.ac.iie.topology.LogFlowWriteTopology $1 remote
|
||||
34
storm/topo/storm_topology/completion/alone/startall.sh
Executable file
34
storm/topo/storm_topology/completion/alone/startall.sh
Executable file
@@ -0,0 +1,34 @@
|
||||
#! /bin/bash
|
||||
#启动storm任务脚本
|
||||
|
||||
#任务jar所在目录
|
||||
BASE_DIR=$2
|
||||
#jar name
|
||||
JAR_NAME='log-stream-completion.jar'
|
||||
#nimbus ip
|
||||
LOCAL_IP=$3
|
||||
|
||||
cd $BASE_DIR
|
||||
|
||||
function read_dir(){
|
||||
for file in `ls $1` #注意此处这是两个反引号,表示运行系统命令
|
||||
do
|
||||
if [ -d $1"/"$file ] #注意此处之间一定要加上空格,否则会报错
|
||||
then
|
||||
read_dir $1"/"$file
|
||||
else
|
||||
jar -xvf $BASE_DIR/$JAR_NAME service_flow_config.properties
|
||||
cat $1$file > $BASE_DIR/service_flow_config.properties
|
||||
sed -i 's/ipaddress/'$LOCAL_IP'/' $BASE_DIR/service_flow_config.properties
|
||||
jar -uvf $BASE_DIR/$JAR_NAME service_flow_config.properties
|
||||
kubectl exec -c k8s-nimbus nimbus-0 -n default -- storm jar /opt/test/topo/storm_topology/completion/alone/$JAR_NAME cn.ac.iie.topology.LogFlowWriteTopology TEST1 remote
|
||||
fi
|
||||
done
|
||||
}
|
||||
if [ $# != 3 ];then
|
||||
echo "usage: ./startall.sh [Configuration path] [Path of jar] [nimbus ip]"
|
||||
exit 1
|
||||
fi
|
||||
#读取第一个参数 为配置文件目录名称
|
||||
read_dir $1
|
||||
|
||||
@@ -0,0 +1,75 @@
|
||||
#管理kafka地址
|
||||
#bootstrap.servers=192.168.40.119:9092,192.168.40.122:9092,192.168.40.123:9092
|
||||
bootstrap.servers=ipaddress:9092
|
||||
#zookeeper 地址
|
||||
#zookeeper.servers=192.168.40.119:2181,192.168.40.122:2181,192.168.40.123:2181
|
||||
zookeeper.servers=ipaddress:2181
|
||||
#hbase zookeeper地址
|
||||
#hbase.zookeeper.servers=192.168.40.119:2181,192.168.40.122:2181,192.168.40.123:2181
|
||||
hbase.zookeeper.servers=ipaddress:2182
|
||||
#hbase tablename
|
||||
hbase.table.name=subcriber_info
|
||||
|
||||
#latest/earliest
|
||||
auto.offset.reset=latest
|
||||
|
||||
#kafka broker下的topic名称
|
||||
kafka.topic=CONNECTION-RECORD-LOG
|
||||
|
||||
#读取topic,存储该spout id的消费offset信息,可通过该拓扑命名;具体存储offset的位置,确定下次读取不重复的数据;
|
||||
group.id=connection-log-191122
|
||||
|
||||
#输出topic
|
||||
results.output.topic=CONNECTION-RECORD-COMPLETED-LOG
|
||||
|
||||
#storm topology workers
|
||||
topology.workers=1
|
||||
|
||||
#spout并行度 建议与kafka分区数相同
|
||||
spout.parallelism=1
|
||||
|
||||
#处理补全操作的bolt并行度-worker的倍数
|
||||
datacenter.bolt.parallelism=1
|
||||
|
||||
#写入kafka的并行度
|
||||
kafka.bolt.parallelism=1
|
||||
|
||||
#定位库地址
|
||||
ip.library=/dat/
|
||||
|
||||
#kafka批量条数
|
||||
batch.insert.num=2000
|
||||
|
||||
#数据中心(UID)
|
||||
data.center.id.num=12
|
||||
|
||||
#tick时钟频率
|
||||
topology.tick.tuple.freq.secs=5
|
||||
|
||||
#hbase 更新时间
|
||||
hbase.tick.tuple.freq.secs=60
|
||||
|
||||
#当bolt性能受限时,限制spout接收速度,理论看ack开启才有效
|
||||
topology.config.max.spout.pending=150000
|
||||
|
||||
#ack设置 1启动ack 0不启动ack
|
||||
topology.num.acks=0
|
||||
|
||||
#spout接收睡眠时间
|
||||
topology.spout.sleep.time=1
|
||||
|
||||
#用于过滤对准用户名
|
||||
check.ip.scope=10,100,192
|
||||
|
||||
#允许发送kafka最大失败数
|
||||
max.failure.num=20
|
||||
|
||||
#influx地址
|
||||
influx.ip=http://192.168.40.151:8086
|
||||
|
||||
#influx用户名
|
||||
influx.username=admin
|
||||
|
||||
#influx密码
|
||||
influx.password=admin
|
||||
|
||||
@@ -0,0 +1,75 @@
|
||||
#管理kafka地址
|
||||
##bootstrap.servers=192.168.40.119:9092,192.168.40.122:9092,192.168.40.123:9092
|
||||
bootstrap.servers=ipaddress:9092
|
||||
##zookeeper 地址
|
||||
##zookeeper.servers=192.168.40.119:2181,192.168.40.122:2181,192.168.40.123:2181
|
||||
zookeeper.servers=ipaddress:2181
|
||||
##hbase zookeeper地址
|
||||
##hbase.zookeeper.servers=192.168.40.119:2181,192.168.40.122:2181,192.168.40.123:2181
|
||||
hbase.zookeeper.servers=ipaddress:2182
|
||||
#hbase tablename
|
||||
hbase.table.name=subcriber_info
|
||||
|
||||
#latest/earliest
|
||||
auto.offset.reset=latest
|
||||
|
||||
#kafka broker下的topic名称
|
||||
kafka.topic=PROXY-EVENT-LOG
|
||||
|
||||
#读取topic,存储该spout id的消费offset信息,可通过该拓扑命名;具体存储offset的位置,确定下次读取不重复的数据;
|
||||
group.id=proxy-event-191122
|
||||
|
||||
#输出topic
|
||||
results.output.topic=PROXY-EVENT-COMPLETED-LOG
|
||||
|
||||
#storm topology workers
|
||||
topology.workers=1
|
||||
|
||||
#spout并行度 建议与kafka分区数相同
|
||||
spout.parallelism=1
|
||||
|
||||
#处理补全操作的bolt并行度-worker的倍数
|
||||
datacenter.bolt.parallelism=1
|
||||
|
||||
#写入kafka的并行度
|
||||
kafka.bolt.parallelism=1
|
||||
|
||||
#定位库地址
|
||||
ip.library=/dat/
|
||||
|
||||
#kafka批量条数
|
||||
batch.insert.num=2000
|
||||
|
||||
#数据中心(UID)
|
||||
data.center.id.num=14
|
||||
|
||||
#tick时钟频率
|
||||
topology.tick.tuple.freq.secs=5
|
||||
|
||||
#hbase 更新时间
|
||||
hbase.tick.tuple.freq.secs=60
|
||||
|
||||
#当bolt性能受限时,限制spout接收速度,理论看ack开启才有效
|
||||
topology.config.max.spout.pending=150000
|
||||
|
||||
#ack设置 1启动ack 0不启动ack
|
||||
topology.num.acks=0
|
||||
|
||||
#spout接收睡眠时间
|
||||
topology.spout.sleep.time=1
|
||||
|
||||
#用于过滤对准用户名
|
||||
check.ip.scope=10,100,192
|
||||
|
||||
#允许发送kafka最大失败数
|
||||
max.failure.num=20
|
||||
|
||||
#influx地址
|
||||
influx.ip=http://192.168.40.151:8086
|
||||
|
||||
#influx用户名
|
||||
influx.username=admin
|
||||
|
||||
#influx密码
|
||||
influx.password=admin
|
||||
|
||||
@@ -0,0 +1,75 @@
|
||||
#管理kafka地址
|
||||
##bootstrap.servers=192.168.40.119:9092,192.168.40.122:9092,192.168.40.123:9092
|
||||
bootstrap.servers=ipaddress:9092
|
||||
##zookeeper 地址
|
||||
##zookeeper.servers=192.168.40.119:2181,192.168.40.122:2181,192.168.40.123:2181
|
||||
zookeeper.servers=ipaddress:2181
|
||||
##hbase zookeeper地址
|
||||
##hbase.zookeeper.servers=192.168.40.119:2181,192.168.40.122:2181,192.168.40.123:2181
|
||||
hbase.zookeeper.servers=ipaddress:2182
|
||||
#hbase tablename
|
||||
hbase.table.name=subcriber_info
|
||||
|
||||
#latest/earliest
|
||||
auto.offset.reset=latest
|
||||
|
||||
#kafka broker下的topic名称
|
||||
kafka.topic=RADIUS-RECORD-LOG
|
||||
|
||||
#读取topic,存储该spout id的消费offset信息,可通过该拓扑命名;具体存储offset的位置,确定下次读取不重复的数据;
|
||||
group.id=radius-record-191122
|
||||
|
||||
#输出topic
|
||||
results.output.topic=RADIUS-RECORD-COMPLETED-LOG
|
||||
|
||||
#storm topology workers
|
||||
topology.workers=1
|
||||
|
||||
#spout并行度 建议与kafka分区数相同
|
||||
spout.parallelism=1
|
||||
|
||||
#处理补全操作的bolt并行度-worker的倍数
|
||||
datacenter.bolt.parallelism=1
|
||||
|
||||
#写入kafka的并行度
|
||||
kafka.bolt.parallelism=1
|
||||
|
||||
#定位库地址
|
||||
ip.library=/dat/
|
||||
|
||||
#kafka批量条数
|
||||
batch.insert.num=2000
|
||||
|
||||
#数据中心(UID)
|
||||
data.center.id.num=13
|
||||
|
||||
#tick时钟频率
|
||||
topology.tick.tuple.freq.secs=5
|
||||
|
||||
#hbase 更新时间
|
||||
hbase.tick.tuple.freq.secs=60
|
||||
|
||||
#当bolt性能受限时,限制spout接收速度,理论看ack开启才有效
|
||||
topology.config.max.spout.pending=150000
|
||||
|
||||
#ack设置 1启动ack 0不启动ack
|
||||
topology.num.acks=0
|
||||
|
||||
#spout接收睡眠时间
|
||||
topology.spout.sleep.time=1
|
||||
|
||||
#用于过滤对准用户名
|
||||
check.ip.scope=10,100,192
|
||||
|
||||
#允许发送kafka最大失败数
|
||||
max.failure.num=20
|
||||
|
||||
#influx地址
|
||||
influx.ip=http://192.168.40.151:8086
|
||||
|
||||
#influx用户名
|
||||
influx.username=admin
|
||||
|
||||
#influx密码
|
||||
influx.password=admin
|
||||
|
||||
@@ -0,0 +1,75 @@
|
||||
#管理kafka地址
|
||||
##bootstrap.servers=192.168.40.119:9092,192.168.40.122:9092,192.168.40.123:9092
|
||||
bootstrap.servers=ipaddress:9092
|
||||
##zookeeper 地址
|
||||
##zookeeper.servers=192.168.40.119:2181,192.168.40.122:2181,192.168.40.123:2181
|
||||
zookeeper.servers=ipaddress:2181
|
||||
##hbase zookeeper地址
|
||||
##hbase.zookeeper.servers=192.168.40.119:2181,192.168.40.122:2181,192.168.40.123:2181
|
||||
hbase.zookeeper.servers=ipaddress:2182
|
||||
#hbase tablename
|
||||
hbase.table.name=subcriber_info
|
||||
|
||||
#latest/earliest
|
||||
auto.offset.reset=latest
|
||||
|
||||
#kafka broker下的topic名称
|
||||
kafka.topic=SECURITY-EVENT-LOG
|
||||
|
||||
#读取topic,存储该spout id的消费offset信息,可通过该拓扑命名;具体存储offset的位置,确定下次读取不重复的数据;
|
||||
group.id=security-policy-191122
|
||||
|
||||
#输出topic
|
||||
results.output.topic=SECURITY-EVENT-COMPLETED-LOG
|
||||
|
||||
#storm topology workers
|
||||
topology.workers=1
|
||||
|
||||
#spout并行度 建议与kafka分区数相同
|
||||
spout.parallelism=1
|
||||
|
||||
#处理补全操作的bolt并行度-worker的倍数
|
||||
datacenter.bolt.parallelism=1
|
||||
|
||||
#写入kafka的并行度
|
||||
kafka.bolt.parallelism=1
|
||||
|
||||
#定位库地址
|
||||
ip.library=/dat/
|
||||
|
||||
#kafka批量条数
|
||||
batch.insert.num=2000
|
||||
|
||||
#数据中心(UID)
|
||||
data.center.id.num=15
|
||||
|
||||
#tick时钟频率
|
||||
topology.tick.tuple.freq.secs=5
|
||||
|
||||
#hbase 更新时间
|
||||
hbase.tick.tuple.freq.secs=60
|
||||
|
||||
#当bolt性能受限时,限制spout接收速度,理论看ack开启才有效
|
||||
topology.config.max.spout.pending=150000
|
||||
|
||||
#ack设置 1启动ack 0不启动ack
|
||||
topology.num.acks=0
|
||||
|
||||
#spout接收睡眠时间
|
||||
topology.spout.sleep.time=1
|
||||
|
||||
#用于过滤对准用户名
|
||||
check.ip.scope=10,100,192
|
||||
|
||||
#允许发送kafka最大失败数
|
||||
max.failure.num=20
|
||||
|
||||
#influx地址
|
||||
influx.ip=http://192.168.40.151:8086
|
||||
|
||||
#influx用户名
|
||||
influx.username=admin
|
||||
|
||||
#influx密码
|
||||
influx.password=admin
|
||||
|
||||
BIN
storm/topo/storm_topology/completion/log-stream-completion.jar
Normal file
BIN
storm/topo/storm_topology/completion/log-stream-completion.jar
Normal file
Binary file not shown.
34
storm/topo/storm_topology/completion/startall.sh
Executable file
34
storm/topo/storm_topology/completion/startall.sh
Executable file
@@ -0,0 +1,34 @@
|
||||
#! /bin/bash
|
||||
#启动storm任务脚本
|
||||
|
||||
#任务jar所在目录
|
||||
BASE_DIR=$2
|
||||
#jar name
|
||||
JAR_NAME='log-stream-completion.jar'
|
||||
#nimbus ip
|
||||
LOCAL_IP=$3
|
||||
|
||||
cd $BASE_DIR
|
||||
|
||||
function read_dir(){
|
||||
for file in `ls $1` #注意此处这是两个反引号,表示运行系统命令
|
||||
do
|
||||
if [ -d $1"/"$file ] #注意此处之间一定要加上空格,否则会报错
|
||||
then
|
||||
read_dir $1"/"$file
|
||||
else
|
||||
jar -xvf $BASE_DIR/$JAR_NAME service_flow_config.properties
|
||||
cat $1$file > $BASE_DIR/service_flow_config.properties
|
||||
sed -i 's/ipaddress/'$LOCAL_IP'/' $BASE_DIR/service_flow_config.properties
|
||||
jar -uvf $BASE_DIR/$JAR_NAME service_flow_config.properties
|
||||
docker run -it --rm -v $BASE_DIR/$JAR_NAME:/$JAR_NAME --env ZK_IPARR=$LOCAL_IP --env NIMBUS_IP=$LOCAL_IP --env ZK_PORTS=2182 --net host storm:1.0.2 /opt/apache-storm-1.0.2/start_storm.sh storm jar /$JAR_NAME cn.ac.iie.topology.LogFlowWriteTopology $file remote
|
||||
fi
|
||||
done
|
||||
}
|
||||
if [ $# != 3 ];then
|
||||
echo "usage: ./startall.sh [Configuration path] [Path of jar] [nimbus ip]"
|
||||
exit 1
|
||||
fi
|
||||
#读取第一个参数 为配置文件目录名称
|
||||
read_dir $1
|
||||
|
||||
17
storm/topo/storm_topology/completion/stoptopologe.sh
Normal file
17
storm/topo/storm_topology/completion/stoptopologe.sh
Normal file
@@ -0,0 +1,17 @@
|
||||
#! /bin/bash
|
||||
#storm任务停止脚本
|
||||
function read_dir(){
|
||||
for file in `ls $1` #注意此处这是两个反引号,表示运行系统命令
|
||||
do
|
||||
if [ -d $1"/"$file ] #注意此处之间一定要加上空格,否则会报错
|
||||
then
|
||||
read_dir $1"/"$file
|
||||
else
|
||||
docker exec nimbus storm kill $file -w 1
|
||||
# /home/bigdata/apache-storm-1.0.2/bin/storm kill $file -w 1
|
||||
echo $file #在此处处理文件即可
|
||||
fi
|
||||
done
|
||||
}
|
||||
#读取第一个参数 为配置文件目录名
|
||||
read_dir $1
|
||||
Reference in New Issue
Block a user