This repository has been archived on 2025-09-14. You can view files and clone it, but cannot push or open issues or pull requests.
Files
dongxiaoyan-tsg-autotest/04-CustomLibrary/Custometest/ReportSchema.py

522 lines
22 KiB
Python
Raw Normal View History

import requests
import random
import json
import time
import ipaddress
#生成随机ipv4或ipv6
MAX_IPV4 = ipaddress.IPv4Address._ALL_ONES # 2 ** 32 - 1
MAX_IPV6 = ipaddress.IPv6Address._ALL_ONES # 2 ** 128 - 1
def random_ipv4():
2021-04-09 14:31:00 +08:00
return ipaddress.IPv4Address._string_from_ip_int(
random.randint(0, MAX_IPV4))
def random_ipv6():
2021-04-09 14:31:00 +08:00
return ipaddress.IPv6Address._string_from_ip_int(
random.randint(0, MAX_IPV6))
#随机生成邮箱地址
def RandomEmail( emailType=None, rang=None):
__emailtype = ["@qq.com", "@163.com", "@126.com", "@189.com"]
# 如果没有指定邮箱类型,默认在 __emailtype中随机一个
if emailType == None:
__randomEmail = random.choice(__emailtype)
else:
__randomEmail = emailType
# 如果没有指定邮箱长度默认在4-10之间随机
if rang == None:
__rang = random.randint(4, 10)
else:
__rang = int(rang)
__Number = "0123456789qbcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPWRSTUVWXYZ"
__randomNumber = "".join(random.choice(__Number) for i in range(__rang))
_email = __randomNumber + __randomEmail
return _email
#获取Schema
2021-04-09 14:31:00 +08:00
def schema(schemauerl,token,logtype):
url ="http://192.168.44.72:8080/v1/log/schema?logType="+logtype
headers = {"Content-Type":"application/x-www-form-urlencoded","Authorization":token}
response = requests.get(url=url,headers=headers)
return response.json()
#获取json串中groupColumnList的值
def groupby(schemajson):
#生成随机数
# securitynb=random.randint(1,33)
# proxynb=random.randint(1,23)
# sessionnb=random.randint(1,24)
# Radiusnb=random.randint(1,4)
#取出group值得列表
dimensions=schemajson["data"]["doc"]["schema_query"]["dimensions"]
dimensions.append("common_recv_time");
# print(dimensions)
randomstr_1= random.sample(dimensions, 4)
#定义grp为返回值group的列表
grp=[]
for i in randomstr_1:
a={"name":i}
grp.append(a)
re=[grp,randomstr_1]
return re
#获取json串中queryColumnList的值
def DataBindings(schemajson,randomstr_1):
#生成queryColumnList列表
metrics=schemajson["data"]["doc"]["schema_query"]["metrics"]
metrics.append("common_log_id")
#在列表里随机去除元素
randomstr_2= random.sample(metrics, 6)
#在聚合列表中去掉groupby中的重复的元素
randomstr_3=array_diff(randomstr_2,randomstr_1)
#将groupby中元素添加到串中
qul=[]
for i in randomstr_1:
a={"name":i}
qul.append(a)
fields = schemajson["data"]["fields"]
list_1=["sum","min","max","avg","count"]
list_2=["count","count_distinct"]
for i in randomstr_3:
for j in fields:
if i == j["name"] :
jtype=j["type"]
if jtype == "int" or jtype == "long" or jtype == "float" or jtype == "double":
radomlist=random.sample(list_1,1)
randomstr_4={"name":i,"expression":radomlist[0]}
qul.append(randomstr_4)
elif jtype == "randomstring" or jtype == "date" or jtype == "timestamp":
randomlist=random.sample(list_2,1)
randomstr_4={"name":i,"expression":randomlist[0]}
qul.append(randomstr_4)
return qul
# #去除a列表中存在的b的元素
def array_diff(a, b):
#定义空列表
c=[]
#range(len(a))取的为列表a的索引根据a的
for i in range(len(a)):
#取出索引对应的值
t=a[i]
#判断值是否存在在序列b中
if t not in b:
#如果序列不在b中则写入序列c
c.append(t)
#返回序列cc就是列表a去除列表b之后的元素
return c
def filterCondition(schemajson):
number = random.randint(0,100000)
randomstr= random.choice('abcdefghijklmnopqrstuvwxyz')
schemafilters=schemajson["data"]["doc"]["schema_query"]["filters"]
list1= random.sample(schemafilters,3)
print("条件列表",list1)
print("number",number)
print("randomstr",randomstr)
print("str(number)",str(number))
#获取不同属性支持的部不同操作
fields = schemajson["data"]["fields"]
operator = schemajson["data"]["doc"]["schema_query"]["references"]["operator"]
andConditions=[]
for i in list1:
#遍历fields列表
for k in fields:
#当filters列表值等于fields的name时
if i == k["name"]:
name = k["name"]
doc = k["doc"]
#获取无任何特殊说明列:
if doc == None:
type1 = k["type"]
if type1 == "int" or type1 == "long":
orConditions_list=[]
Operator=["=","!=",">","<",">=","<="]
randomOperator= random.sample(Operator, 1)
value=[str(number)]
Field={"name":name,"expression":randomOperator[0],"value":value,"type":type1}
orConditions_list.append(Field)
orConditions={"orConditions":orConditions_list}
andConditions.append(orConditions)
elif type1 == "string":
orConditions_list=[]
Operator=["=","!=","Like","Not Like","notEmpty"]
randomOperator_1= random.sample(Operator, 1)
randomOperator=randomOperator_1[0]
value=[]
if randomOperator == "=" or randomOperator == "!=":
value.append(str(number))
elif randomOperator == "Like" or randomOperator == "Not Like":
value.append(randomstr)
elif randomOperator=="notEmpty":
value=[]
Field={"name":name,"expression":randomOperator,"value":value,"type":type1}
orConditions_list.append(Field)
orConditions={"orConditions":orConditions_list}
andConditions.append(orConditions)
else:
if k["doc"]["constraints"]== None:
type1 = k["type"]
if type1 == "int" or type1 == "long":
orConditions_list=[]
Operator=["=","!=",">","<",">=","<="]
randomOperator= random.sample(Operator, 1)
value=[str(number)]
Field={"name":name,"expression":randomOperator[0],"value":value,"type":type1}
orConditions_list.append(Field)
orConditions={"orConditions":orConditions_list}
andConditions.append(orConditions)
elif type1 == "string":
orConditions_list=[]
Operator=["=","!=","Like","Not Like","notEmpty"]
randomOperator_1= random.sample(Operator, 1)
randomOperator=randomOperator_1[0]
value=[]
if randomOperator == "=" or randomOperator == "!=":
value.append(str(number))
elif randomOperator == "Like" or randomOperator == "Not Like":
value.append(randomstr)
elif randomOperator=="notEmpty":
value=[]
Field={"name":name,"expression":randomOperator,"value":value,"type":type1}
orConditions_list.append(Field)
orConditions={"orConditions":orConditions_list}
andConditions.append(orConditions)
else:
if k["doc"]["constraints"]["operator_functions"]==None:
conrandomstraints=k["doc"]["constraints"]
type1 = k["type"]
if type1 == "int" or type1 == "long":
Operator=["=","!=",">","<",">=","<="]
randomOperator_1= random.sample(Operator, 1)
randomOperator=randomOperator_1[0]
if conrandomstraints["type"] == "timestamp":
#获取当前时间戳
t = int(time.time())
orConditions_list=[]
value=[str(t)]
Field={"name":name,"expression":randomOperator,"value":value,"type":type1}
orConditions_list.append(Field)
orConditions={"orConditions":orConditions_list}
andConditions.append(orConditions)
elif type1 == "string":
Operator=["=","!=","Like","Not Like","notEmpty"]
randomOperator_1= random.sample(Operator, 1)
randomOperator=randomOperator_1[0]
if conrandomstraints["type"] == "ip":
orConditions_list=[]
#获取ip
ip =random_ipv4()
value=[]
if randomOperator == "=" or randomOperator == "!=":
value.append(ip)
elif randomOperator == "Like" or randomOperator == "Not Like":
value.append(ip)
elif randomOperator=="notEmpty":
value=[]
Field={"name":name,"expression":randomOperator,"value":value,"type":type1}
orConditions_list.append(Field)
orConditions={"orConditions":orConditions_list}
andConditions.append(orConditions)
elif conrandomstraints["type"] == "email":
orConditions_list=[]
Operator=["=","!=","Like","Not Like","notEmpty"]
randomOperator_1= random.sample(Operator, 1)
randomOperator=randomOperator_1[0]
#获取ip
emil =RandomEmail()
value=[]
if randomOperator == "=" or randomOperator == "!=":
value.append(emil)
elif randomOperator == "Like" or randomOperator == "Not Like":
value.append(emil)
elif randomOperator=="notEmpty":
value=[]
Field={"name":name,"expression":randomOperator,"value":value,"type":type1}
orConditions_list.append(Field)
orConditions={"orConditions":orConditions_list}
andConditions.append(orConditions)
else:
type1 = k["type"]
orConditions_list=[]
operator1 = k["doc"]["constraints"]["operator_functions"]
operator2 = operator1.split(",")
operator3=random.sample(operator2,1)
operatordata=k["doc"]["data"]
code=[]
for i in operatordata:
code_1=i["code"]
code.append(code_1)
code2=random.sample(code, 1)
Field={"name":name,"expression":operator3[0],"value":code2,"type":type1}
orConditions_list.append(Field)
orConditions={"orConditions":orConditions_list}
andConditions.append(orConditions)
filterCondition={"andConditions":andConditions}
print(filterCondition)
return filterCondition
#获取having条件的串
2021-04-09 14:31:00 +08:00
def havingjson(schemajson):
number = random.randint(0,100000)
schemametrics=schemajson["data"]["doc"]["schema_query"]["metrics"]
aggregation = schemajson["data"]["doc"]["schema_query"]["references"]["aggregation"]
schemametrics.append("common_log_id")
metricslist= random.sample(schemametrics,3)
fields = schemajson["data"]["fields"]
operator=["=","!=",">","<",">=","<="]
andConditions_list=[]
#遍历的到的having条件列表
for i in metricslist:
for j in fields:
if i == j["name"]:
name = j["name"]
type1=j["type"]
for v in aggregation:
if type1 == v["type"]:
orConditions_list=[]
functionsstr=v["functions"]
functionslist = functionsstr.split(",")
functions_1=random.sample(functionslist, 1)
if functions_1=="COUNT_DISTINCT" and type1 != "string":
functions_1=random.sample(functionslist, 1)
operator_1=random.sample(operator, 1)
havingdict={"name":name,"function":str.lower(functions_1[0]),"expression":operator_1[0],"value":str(number)}
orConditions_list.append(havingdict)
orConditions={"orConditions":orConditions_list}
2021-04-09 14:31:00 +08:00
andConditions_list.append(orConditions)
havingCondition={"andConditions":andConditions_list}
print(havingCondition)
return havingCondition
#拼接字符串
2021-04-09 14:31:00 +08:00
def datasetjson(schemauerl,token,testname,logtype):
schema_new=schema(schemauerl,token,logtype)
group_re=groupby(schema_new)
groupColumnList=group_re[0]
group_randomstr=group_re[1]
queryColumnList=DataBindings(schema_new,group_randomstr)
filterCondition_1=filterCondition(schema_new)
2021-04-09 14:31:00 +08:00
havingjson_1=havingjson(schema_new)
datasetdict = {
"list": {
"name":testname,
"logType": "security_event_log",
"groupColumnList":groupColumnList,
"queryColumnList":queryColumnList,
"filterCondition":filterCondition_1,
2021-04-09 14:31:00 +08:00
"havingCondition":havingjson_1
}
}
print(datasetdict)
print(json.dumps(datasetdict))
return json.dumps(datasetdict)
2021-04-09 14:31:00 +08:00
#拼接char的json串
def charjson(schemaurl,token,queryColumnList,groupColumnList,datasetid,testname,logtype):
print("queryColumnList",queryColumnList)
schema_new=schema(schemaurl,token,logtype)
fields = schema_new["data"]["fields"]
2021-04-09 14:31:00 +08:00
# 获取条件的label
namelist=[]
for i in queryColumnList:
for j in fields:
2021-04-09 14:31:00 +08:00
if i["name"] == j["name"]:
j_label=j["label"]
namelist.append(j_label)
print("namelist",namelist)
#获取聚合条件的label
groupColumnlaberList=[]
for i in groupColumnList:
for j in fields:
if i["name"] == j["name"]:
j_label=j["label"]
groupColumnlaberList.append(j_label)
print("groupColumnlaberList",groupColumnlaberList)
#图表类型列表
chartType_1=["line","pie","bar","area","table"]
chartType_2=["pie","bar","table"]
chartType=[]
2021-04-09 14:31:00 +08:00
# #随机选择图表类型
s=1
for i in namelist:
if i == "Receive Time" or i == "Start Time" or i == "End Time":
2021-04-09 14:31:00 +08:00
s+=1
if s != 1:
chartType=random.sample(chartType_1, 1)
else:
chartType=random.sample(chartType_2, 1)
chardict={}
print("chartType",chartType)
if chartType[0] == "line" or chartType[0] == "area":
dataBinding=[]
#将时间条件赋值给dataBinding
for j in namelist:
if j == "Receive Time" or j == "Start Time" or j == "End Time":
dataBinding.append(j)
2021-04-09 14:31:00 +08:00
timelin={
"dataBinding": dataBinding[0],
"format": "Time"
}
print("timelin",timelin)
namelist.remove(dataBinding[0]) #从统计查询数据列对象内去掉时间条件
groupColumnlaberList.remove(dataBinding[0]) #从聚合条件内去掉时间的条件
for i in groupColumnlaberList: #从统计查询条件内去掉聚合条件内的值
namelist.remove(i)
print("namelistrome",namelist)
linlist=[]
for i in namelist:
lindict={
"dataBinding": i,
"type": "Line Up",
"format": "Default",
}
linlist.append(lindict)
listdict={
"name": testname,
"datasetId": datasetid,
"datasetName": "",
"chartType": chartType[0],
"dataTop": 0,
"orderBy": "",
"orderDesc": 0,
"drilldownTop": 0,
"timeline": timelin,
"line": linlist
}
chardict={"list": listdict}
elif chartType[0] == "pie" or chartType[0] == "bar":
xAxisdataBinding=random.sample(groupColumnlaberList, 1)
xAxisdict={
"dataBinding": xAxisdataBinding[0],
"dataTop": 5,
"dataType": ""
}
for i in groupColumnlaberList:
namelist.remove(i)
yAxisBinding=random.sample(namelist, 1)
yAxisdict={
"dataBinding": yAxisBinding[0],
"format": "Default",
}
yAxislist=[yAxisdict]
listdict={
"name": testname,
"datasetId": datasetid,
"datasetName": "",
"chartType": chartType[0],
"dataTop": 0,
"orderBy": "",
"orderDesc": "",
"xAxis": xAxisdict,
"yAxis": yAxislist
}
chardict={"list": listdict}
elif chartType[0] == "table":
columnslist=[]
for i in namelist:
dataBindings={
"dataType": "",
"dataBinding": i,
"format": "Default",
}
dataBindingslist=[]
dataBindingslist.append(dataBindings)
columnsdict={
"title": i,
"width": 0,
"dataBindings": dataBindingslist
}
columnslist.append(columnsdict)
listdict={
"name": testname,
"datasetId": datasetid,
"datasetName": "",
"chartType": "table",
"dataTop": 5,
"orderBy": "",
"orderDesc": "",
"drilldownTop": 5,
"tableType": "Regular",
"columns": columnslist
}
chardict={"list": listdict}
print(json.dumps(chardict))
return json.dumps(chardict)
2021-04-09 14:31:00 +08:00
def Reportsjson(chartId,testname):
charlist=[]
chardict={
"chartId": chartId,
"timeGranulartiy": 1,
"timeUnit": "",
# "disabled": true
}
charlist.append(chardict)
reportJobList=[]
reportJobdct_1={
"rangeType": "last",
"rangeInterval": 1,
"rangeUnit": "week",
"jobName": testname,
"scheduleId": "",
"chartList": charlist,
"isNotice": 0,
"noticeMethod": "",
"startTime": "",
"endTime": "",
"filterCondition": None,
"isDisplayTrafficTrend": 1
}
reportJobdct_2={"reportJobList": reportJobdct_1}
print(json.dumps(reportJobdct_2))
return json.dumps(reportJobdct_2)
def ReportInterfaceTest(schemaurl,token,dataseturl,charurl,repporturl,datasetgeturl,chargeturl,testname,logtype):
headers = {"Content-Type": "application/json","Authorization": token}
2021-04-09 14:31:00 +08:00
#dataset生成json串并发送请求
_datasetjson=datasetjson(schemaurl, token,testname,logtype)
response1 = requests.post(url=dataseturl, data=_datasetjson, headers=headers)
print("返回数据1",response1)
code = response1.json()["code"]
2021-04-09 14:31:00 +08:00
print("datasetcode:",code)
assert code == 200
2021-04-09 14:31:00 +08:00
#获取dataset的id
datasetget=requests.get(url=datasetgeturl,headers=headers)
dasetget=datasetget.json()
2021-04-09 14:31:00 +08:00
datesetid=dasetget["data"]["list"][0]["id"]
_datasetjson=json.loads(_datasetjson)
queryColumnList=_datasetjson["list"]["queryColumnList"]
groupColumnList=_datasetjson["list"]["groupColumnList"]
#生成charlibrariesjson串
charlibrariesjson=charjson(schemaurl, token,queryColumnList,groupColumnList,datesetid,testname,logtype)
response2 = requests.post(url=charurl, data=charlibrariesjson, headers=headers)
code = response2.json()["code"]
assert code == 200
2021-04-09 14:31:00 +08:00
#获取char libraries的id
charget=requests.get(url=chargeturl,headers=headers)
charget=charget.json()
charid=charget["data"]["list"][0]["id"]
2021-04-09 14:31:00 +08:00
#report生成json串并发送请求
reportjson=Reportsjson(charid,testname)
response3 = requests.post(url=repporturl, data=reportjson, headers=headers)
code = response3.json()["code"]
assert code == 200
2021-04-09 14:31:00 +08:00