import pandas as pd # 将meta文件转换为模型可以直接使用的label文件 meta_csv_path = "cicdos2017/dataset/meta.csv" label_csv_path = "cicdos2017/label/label.csv" df = pd.read_csv(meta_csv_path) mixed_row_num =0 high_row_num = 0 low_row_num = 0 normal_row_num =0 label_ls =[] for index, row in df.iterrows(): if index % 20000 == 0: print("processing index:",index) high_num = int(row[0]) low_num = int(row[1]) normal_num = int(row[2]) features = row[3:43] label = "normal" if low_num==0 and normal_num==0: label = "high" high_row_num +=1 elif high_num==0 and normal_num==0: label = "low" low_row_num+=1 elif high_num==0 and low_num==0: label = "normal" normal_row_num+=1 else: mixed_row_num+=1 #print("high,low,normal:",high_num,low_num,normal_num) continue #混合的row直接丢弃 label_row =[label] label_row.extend(features) label_ls.append(label_row) print("mix row num:",mixed_row_num) print("high row num:",high_row_num) print("low row num:",low_row_num) print("normal row num:",normal_row_num) # write to csv file data = pd.DataFrame(data=label_ls) # print(total_data) data.to_csv(label_csv_path, index=False, encoding="utf-8", sep=',', mode='w', header=True)